INTRODUCTION

Prune Belly Syndrome (PBS) is also known as, Eagle-Barret syndrome, Triad, Osler- Parker Syndrome, Abdominal muscle deficiency syndrome and Mesenchymal dysplasia syndrome (Rupshikha et al., 2011; Ghritlahary et al., 2007; Hasset et al., 2012; Eagle and Barrett, 1950; Obrinsky, 1949). The characteristics wrinkled, prune like abdomen of the infant give the syndrome its name (Wood and Brandon, 2007). Prune belly syndrome is a rare congenital disease. The incidence of prune belly syndrome is between 1 in 29,000 to 1 in 40,000 live male births (Simons et al., 2003). Males are affected 20 times more often than females, with approximately 3% of all cases occurring in females (Leeners et al., 2000; Baris et al., 2001). Fewer than 20 cases of female are reported in literature (Reinberg et al., 1991). Infant born to younger mothers are at greater risk for having prune belly syndrome (Leeners et al., 2000; Baris et al., 2001). The incidence of prune belly syndrome in twins is 4 times greater than that found in single births, at 12.2 per 100,000 live births (Balaji et al., 2000). The exact etiology of Prune belly Syndrome is uncertain. Deficient development of abdominal muscles that causes the skin of the abdomen to wrinkle like a prune, cryptorchidism, abnormalities of the urinary tract (Rupshikha et al., 2011; Ghritlahary et al., 2007; Hasset et al., 2012; Eagle and Barrett, 1950; Obrinsky, 1949; Wood and Brandon, 2007; Simons et al., 2003; Leeners et al., 2000; Baris et al., 2001; Reinberg et al., 1991; Balaji et al., 2000). It is associated with other congenital anomalies and most commonly clinically presented with stillborn (Tagore et al., 2011). The case is reported for its rare congenital abnormality

Case Report

A 29 year old female with a non consanguineous marriage of 6 years, second gravida with a healthy first child and with no family history of congenital anomalies delivered a preterm parturition of a still born male baby at 31 weeks at Silchar Medical College and Hospital, Silchar, Assam, India. There was no history of draining or bleeding per vagina, and no history of hypertension, diabetes, tuberculosis, bronchial asthma, epilepsy, no antenatal teratogenic exposure, fever, rash, or any drug intake. The baby weighted 2.6 kg.

The length of the baby was 47 cm, chest circumference 28 cm and head circumference 35 cm. The baby was diagnosed to be a case of Prune belly syndrome because multiple anomalies were recognized at birth. Those were (1) There was flabby abdominal wall ballooning out in the flanks and skin creases radiating laterally and downwards from the umbilicus, (2) Flat nose, (3) Low set ears, (4) Nipples are absent, (5) A large phallus (Figure 1).
Rest of examination is found to be normal. Attendants refused any further imaging investigation and dissection of this stillborn PBS baby and thus the case was handed over to the attendant.

DISCUSSION

This congenital anomaly was first described by Frolichs in 1839 (Smith and John, 2002). Parker in 1895 presented a case with deficient abdominal wall musculature and dilatation of the urinary tract (Felix and Richard, 1997; Parker, 1895). The term Prune Belly was first coined by Oslar in 1901, as the skin of the patient had dried plum appearance with skin creases (Parker, 1895). The Prune belly syndrome is a congenital disorder with a group of birth defects that involve three main problems: 1. Poor development of the abdominal muscles, causing the skin of abdomen wrinkle like a prune, 2. Undescended testicles (cryptorchidism) and 3. Urinary tract problems like renal hypoplasia, hydronephrosis, hydroureteronephrosis, massive bladder, dilated prostatic urethra, hypoplastic prostate etc (Vani et al., 2013).

In addition to this classical syndrome it is also associated with pulmonary 55%, orthopaedic 40-63%, gastrointestinal 31% and cardiac 10% (Geary et al., 1986; Burbige et al., 1987). Again some other anomalies are also found in this syndrome which results from secondary to oligohydranmios as a pressure effect.

These are flattened cranium, faces and nose, low set ears and chin, the pulmonary hypoplasia, cryptorchidism, Spina bifida, Talipes, congenital dislocation of hips and other lower limb abnormalities are commonly found (Vani et al., 2013; Ganesan and Indrajit, 2001). In female PBS never present in complete forms, there is also associated anomalies of uterus and vagina in them (Faroqui et al., 2014).

Our case also present with the deficient abdominal muscle development, cryptorchidism, flat nose and low set ears. The absence of nipple is also observed in PBS by Tagore et al (Tagore et al., 2011). The phallus is large in our case; similar large phallus in PBS is also observed by Fette A (Fette, 2015) and Shah D et al (Shah et al., 2004). The pathogenesis of Prune belly syndrome is till date not clearly understood

The first theory proposes a prenatal obstruction of the urinary tract, which causes urinary tract dilatation, fetal abdominal distension, and subsequent muscle wall hypoplasia and cryptorchism (Das et al., 1988; Randolph et al., 1981; Volmar et al., 2003; Leordean et al., 2012; Puri and Miyakita H. Prune, 2011). The second, embryology-based theory, proposes the failure of primary mesodermal differentiation between the 6th and 10th week of gestational age (GA), which leads to the defective muscularization of both, the abdominal wall and the urinary tract (Das et al., 1988; Randolph et al., 1981; Volmar et al., 2003; Leordean et al., 2012; Puri and Miyakita H. Prune, 2011).
A third one, the yolk sac theory, indeed, proposes a dysgenesis of the yolk sac and allantois as causative for PBS (Das et al., 1988). But among these three theories, none can explain PBS completely. The abdominal muscle more frequently involved are central and lower abdominal muscle and it can be explained by the first theory but it cannot explain why these kind of changes do not occur in a male infant born with posterior urethral valve (Randolph et al., 1981; Volmar et al., 2003; Leordean et al., 2012; Puri and Miyakita H. Prune, 2011) moreover it also fails to explain the absence of post obstructive changes like smooth muscle thickening, bladder wall trabeculation etc (30). The second and third theory cannot explain the abnormalities found in upper urinary tract and genitals (Das et al., 1988; Leordean et al., 2012; Puri and Miyakita H. Prune, 2011). Vani et al mentioned teratogenic effect caused by viral infection or drug abuse during early week of pregnancy may cause PBS (Vani et al., 2013).

The incomplete or the female syndrome is also known as the “Pseudo Prune Belly syndrome” (Arronson and Cremein, 1980; Rabinowitz and Schillinger, 1977). Till date no clear genetic inheritance pattern has been proved. The observation of 100% discordance among all twins in whom monozgyosity has been proven, goes against a genetic aetiology (Ives, 1974) but, the reported association with Turner’s syndrome, monosomy 16, Trisomy 13 and Trisomy 15 confound the pattern of inheritance may be a two steps autosomal dominant mutation with sex limited expression that partially mimics X-linkage. This theory accounts for the predominance of male subject and occasional familial occurrence (Felix and Richard, 1997; Adenoyokunna and Familusi, 1982).

The prognosis of PBS is poor with stillbirths and early infant deaths being common (Metwalley et al., 2008). Prune belly syndrome in the adult is scantly. Only one case of 24 year old male from Nigeria is available in literature with PBS (Salako et al., 2009). Diao et al. reported that renal failure is the main cause of death in PBS (Diao et al., 2008). There are cases of prune belly syndrome who survived into adult life after abdominal reconstruction and urinary tract repair (Woodhouse, 2001).

Conclusion

Since the first description of the disease between 1839 and 1895 PBS data have been composed primarily of case reports and small case series. There is no known prevention but the routine use of screening for foetal anomalies should be encouraged but till date in a developing country like India accurate antenatal diagnosis of PBS is a challenge. Early diagnosis of this syndrome and determining its optimal treatment are very important in helping to avoid its fatal course.

REFERENCES

Leordean, V., Lazar, D. and Trofenciu, M. 2012. Case reports: morphological aspects in a urogenital
