RESEARCH ARTICLE

INCIDENCE, AETIOLOGY AND PATTERN OF MANDIBLE FRACTURES IN SONEPAT, HARYANA (INDIA)

*Dr. Sunita Malik and Dr. Gurdarshan Singh

Department of Dental Surgery, B.P.S Govt. Medical College and Hospital for Women, Khanpur Kalan, Sonepat, Haryana, India

ARTICLE INFO

ABSTRACT

Background: Maxillofacial fractures are often associated with considerable long-standing functional, aesthetic and mental complications. Mandible is one of the most common facial fracture. As the numbers of cases are rising in recent years, the present study was aimed to describe Incidence, aetiology and pattern of mandibular fractures in Sonepat.

Materials and methods: A prospective Medical institute based study of maxillofacial injury patients was carried out from September 2011 to February 2013 at newly started B.P.S Government Medical College for women, Khanpur kalan, Sonepat. Patients data including sexual category, age, cause, fracture site and pattern were collected and analyzed.

Results: There were a total of 474 patients with 86 mandibular fractures. Males outnumbered females by a ratio of 2.9:1. Age range was 9 months to 72 years with the peak incidence occurring in the age group 18-34 years. Most injuries were caused by Road traffic accident (48.83 per cent), followed by assault (26.74 percent) and sport (13.95 per cent). Prominent site of mandibular fracture was Parasymphysis (27.90%) followed by Angle (24.41%) and body (18.60%). 30.23% of patients with mandible fractures were having multiple fracture sites. Also 10% of patients with mandible fracture had mid-facial fractures associated with it. Closed reduction was done in 13.6% of patients, Open reduction and internal fixation was performed in 46.4% of cases and 18.1% were managed conservatively. The mean duration of hospital stay was 10.14 ± 6.34 days.

Conclusion: This study highlights the importance of Dental surgery in the management of maxillofacial injuries. Moreover there is a need to reinforce legislation and the total enforcement of existing laws to reduce maxillofacial injuries among children and adults.

INTRODUCTION

One of the most prominent position in the human body is the maxillofacial region which renders it susceptible to injuries quite commonly (Wasiu et al., 2005). Maxillofacial injuries are regularly encountered in the practice and are often associated with high morbidity resulting from increased expenses of care. These injuries have remained the topic of discussion among researchers due to varying degrees of physical, functional and cosmetic defacement. The sheer rapidity of contemporary life with express travel as well as progressively more violent and intolerant society has made facial trauma a form of societal disease from which no one is protected. There are changes in patterns of facial injuries, extent, clinical features, and so forth resulting in mild-to massive disfigurement of maxillofacial skeleton along with functional loss. Mandibular fractures are one of the most-frequent facial injuries encountered at a trauma centre. According to several studies, they account for 15.5% to 59% of all facial fractures (Brook and Wood, 1983; Ellis et al., 1985; Scherer et al., 1989; Van Hoof et al., 1977). The epidemiological data for facial and mandibular fractures varies among countries and changes in due course. The aetiology of cranio-maxillofacial injuries varies from country to country and is multi-factorial, that can usually be attributed to socio-economic, demographic, cultural, technological and environmental factors. Therefore, the main mechanism of injury for mandible fractures is inconsistent in the literature (Edwards et al., 1994; Oikarinen et al., 1993; Gilthorpe et al., 1999). Interpersonal violence is the most common cause for mandibular fractures in North-American countries (Fridrich et al., 1992; King et al., 2004; Ogundare et al., 2003; Sinsek et al., 2007), North European countries (Ellis et al., 1985; Deprich et al., 2007; Oikarinen et al., 2004), Australia (Allan and Daly, 1990; Schön et al., 2001) and New Zealand (Kieser et al., 2002; Lee, 2008). In newly industrialising and less developed countries such as Jordan (Bataineh, 1998) or Nigeria (Oji, 1999), road-traffic accidents are the most common cause for mandibular fractures. The management of injuries to the maxillofacial complex demands both skill and a high level of expertise, thus remains a challenge for oral and
maxillofacial surgeons (Kamulegeya et al., 2009; Al Ahmed et al., 2004). Treatment of mandibular fractures has changed over the last 20 years in Western societies. The use of wire osteosynthesis and intermaxillary fixation has decreased and the preference is for open reduction and internal fixation with miniplates (Rix et al., 1991; Renton et al., 1996). This has helped in reducing malocclusion, non-union, improved mouth opening, speech and oral hygiene, decreased weight loss and increased the ability for patients to return to work earlier (Rix et al., 1991; Hayter and Cawood, 1993). However, in resource-limited countries like ours, lack of expertise and facilities for open reduction and internal fixation and late presentation are a major problem in achieving acceptable cosmetic results in maxillofacial trauma patients. Sonepat district is a part of the Eastern Haryana Plain and area of 2260 Km2 with estimated population of 1,480,080. The district has 328 villages and 6 towns. Most of the population lives in rural area. B.P.S Government Medical college for women, Khanpurkalan, Sonepat is the major maxillofacial trauma centre in the district. So a prospective study was conducted for a period of 18 months from September 2011 to February 2013 to assess the incidence, aetiology and pattern of mandibular fractures in Sonepat (Haryana).

Limited information is available regarding mandibular fracture patterns in Haryana (India), and no previous study particularity pertaining to mandibular fractures has been undertaken in Sonepat, India. The aim of the study was to examine the incidence, aetiology, age, sex, anatomical distribution and treatment of mandibular fractures presenting to the trauma centre in rural arena and to compare these with other studies. The results may aid in identifying aetiological factors and in scheduling strategies for prevention. Moreover to suggest the needs to improve safety standards and to educate the younger generation to prevent maxillofacial injuries.

MATERIALS AND METHODS

The prospective study was conducted in the Department of Dental Surgery. Data were collected from consecutive patients (with maxillofacial injuries) attending the Accident and Emergency Department as well as in Outpatient Department of Dental Surgery at B.P.S Government Medical College for women for a period from September 2011 to February 2013 and analyzed. A pre-tested questionnaire was used to record the data. Data collected included: patient’s demography; cause, type, time and place of injury; status of prehospital care; mode of arrival in the hospital; associated injuries; sternness of injury (GCS); treatment modalities and treatment outcome (i.e. post-operative complications, length of hospital stay and mortality). Information relevant to the study was obtained from the patient directly; when this was not possible, collateral history was obtained from either the police or relatives attending to the patients. Detailed clinical examination was done to record the soft tissue lacerations, tooth injuries, number and site(s) of fracture(s) Mandible, Associated injuries etc. The diagnosis was based on clinical and radiological findings. In relevant cases CT Scan and USG was done to rule out foreign bodies. The aetiological factors were divided into Road traffic accidents, assault and injury associated with fall, injuries due to variety of causes including sports, occupational and other related injuries (Dog bite, monkey bite, gunshot injuries etc). Data regarding prevalence, age and sex distribution, causes, types and site of injury, treatment modalities and trauma associated complications were reviewed and analyzed in detail emphasizing the importance of early management of Mandible fracture to prevent functional as well as aesthetic deformities.

RESULTS

In our study, total number of trauma patients reporting the Accident and Emergency Department and Outdoor Patient Department of Dental Surgery Unit of B.P.S Government Medical College for women were 474 with 86 mandibular fractures during 18 months period from September 2011 to February 2013.

Age and sex distribution

Patient age at the time of injury ranges from 9 months to 72 years. In most cases, the patient was between 17 to 34 years. Most of the patients were male (65:21) with male female ratio (3:1).

Table 1. Age and sex distribution

<table>
<thead>
<tr>
<th>S.no</th>
<th>Age-group</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0-17</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>18-34</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>35-51</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>52-68</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>69 and above</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>65</td>
<td>21</td>
</tr>
</tbody>
</table>

Aetiology of mandibular fractures

The most common cause of mandibular fractures was Road traffic accident (48.83 per cent), followed by Assault (26.74 percent) and sport (13.95 per cent). In 9 (10 per cent) of the total patients (86), the mandibular fractures were associated with mid-facial fractures, and 77 patients (90 per cent) involved only the mandible. Of the mandibular fractures also involving the mid-facial area, Road Traffic accident had the highest incidence of 52 per cent, 44 per cent were caused by assaults and 4 per cent by a fall. No associated mid-facial fractures occurred in the other categories of aetiology.
Table 2. Aetiology of Mandibular fractures

<table>
<thead>
<tr>
<th>Cause</th>
<th>No. of cases</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road traffic accident</td>
<td>42</td>
<td>48.83</td>
</tr>
<tr>
<td>Assault</td>
<td>23</td>
<td>26.74</td>
</tr>
<tr>
<td>Sport</td>
<td>12</td>
<td>13.95</td>
</tr>
<tr>
<td>Fall</td>
<td>5</td>
<td>5.81</td>
</tr>
<tr>
<td>Occupational</td>
<td>3</td>
<td>3.48</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>1</td>
<td>1.16</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
<td>100</td>
</tr>
</tbody>
</table>

Anatomical location of mandibular fractures

The most prominent site of mandibular fracture was Parasymphysis (23.25%) followed by Angle (17.44%), body (12.79%), symphysis (8.13%), condyle (5.81%), ramus (2.32%) and coronoid (1.16%). 18.60% of patients had more than one fracture site. There was no significant difference between the right side (48.8 per cent) and the left side (51.2 per cent) of the mandible. The mandible had a single fracture in 53 per cent of the patients, 40.6 per cent had two fractures, 4.8 per cent had three fractures, and 0.8 per cent had more than three fractures.

Table 3. Anatomical location of mandibular fractures

<table>
<thead>
<tr>
<th>Site of fracture</th>
<th>Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Parasymphysis</td>
<td>20</td>
<td>23.25</td>
</tr>
<tr>
<td>2. Condyle</td>
<td>5</td>
<td>5.81</td>
</tr>
<tr>
<td>3. Angle</td>
<td>15</td>
<td>17.44</td>
</tr>
<tr>
<td>4. Body</td>
<td>11</td>
<td>12.79</td>
</tr>
<tr>
<td>5. Symphysis</td>
<td>7</td>
<td>8.13</td>
</tr>
<tr>
<td>6. Ramus</td>
<td>2</td>
<td>2.32</td>
</tr>
<tr>
<td>7. Coronoid</td>
<td>1</td>
<td>1.16</td>
</tr>
<tr>
<td>8. Combination</td>
<td>26</td>
<td>30.23</td>
</tr>
<tr>
<td>Total</td>
<td>86</td>
<td>100</td>
</tr>
</tbody>
</table>

Mandibular fracture pattern combinations

There were 26 different mandibular fracture combinations involving more than one fracture. The most common pattern combinations were angle/parasymphysis (34.61 per cent), followed by body/angle (30.76 per cent), subcondyle/parasymphysis (15.38 per cent) and subcondyle/body (11.53 per cent). Of the patients assaulted, the body/angle (40 per cent) was the predominant combination, followed by the angle/parasymphysis (30 per cent) and the subcondyle/parasymphysis (20 per cent).

Of the patients involved in sport the angle/parasymphysis (50 per cent) was the most common combination. Sports usually resulted in single fractures of the mandible, whilst RTA patients were dispersed over all the different combinations and single fractures.

Table 4. Mandibular fracture pattern combinations and aetiology

<table>
<thead>
<tr>
<th>Fracture Combination</th>
<th>Assault</th>
<th>RTA</th>
<th>Sport</th>
<th>Other</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body/Angle</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>30.76</td>
</tr>
<tr>
<td>Angle/Parasymphysis</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>34.61</td>
</tr>
<tr>
<td>Subcondyle/Body</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15.38</td>
</tr>
<tr>
<td>Subcondyle/Parasymphysis</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>11.53</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>7.69</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>

Month wise distribution of mandibular fractures

The monthly distribution showed January to have the highest incidence, followed closely by July. The lowest incidence was September.
Treatment of mandibular fractures

Primary management of soft tissue injuries included suturing, pressure dressing, splinting of bony fragments, which was done in causality department and further definite intervention in mandibular fracture with close or open reduction and follow up was done in department of Dental surgery BPSGMC, Khanpur kalan, Sonepat. The majority of patients with mandibular fractures were treated by open reduction and internal fixation (ORIF) with miniplates (46.4 per cent). There were 21.9 per cent whom also had ORIF, followed by postoperative intermaxillary fixation (IMF). These patients had multiple fractures and in most cases it involved the subcondyle region. Conservative treatment (18.1 per cent) usually involved a soft diet, analgesia, ± diazepam, ± antibiotics, and the patient was regularly observed over a six week period. Closed reduction was the treatment of least choice in 13.6 per cent of the patients, this involved a nonsurgical approach of IMF, using eyelet wires or archbars and wire or elastics for four to six weeks.

DISCUSSION

Maxillofacial injuries have continued to generate discussion among researchers all over the world due to functional and cosmetic deformities that affected individuals have to assert with. The etiology and pattern of maxillofacial injuries vary from one geographical area to another depending upon the socioeconomic status, geographic condition and cultural characteristics (Leles et al., 2010; Umar et al., 2010; Wimon and Kasemsak, 2008). The predominance of injured males in the age group 18-34 years is consistent with the findings of published work (Kamulegeya et al., 2009; Al Ahmed et al., 2004; Leles et al., 2010; Umar et al., 2010). It may be credited to the fact that people in this period of life are more active regarding sports, fights, violent activities, industry and high speed transportation. The low frequencies in the very young and old age groups are due to the low activities of these age groups. The male predominance in our study agrees with what is reported in literature around the world, which had a male to female ratio of approximately 3:1 (Kamulegeya et al., 2009; Al Ahmed et al., 2004; Umar et al., 2010; Qudah et al., 2005). Males are at greater risk due to their greater participation in high risk activities which increases their exposure to risk factors such as driving vehicles, sports that involve physical contact, an active social life and drug use, including alcohol.

In our study the most common cause of mandibular fractures was Road traffic accident (48.83 per cent), followed by assault (26.74 percent) and sport (13.95 per cent). These findings were converse to those found by Edwards et al. (1994); Dongas et al. (2002); Olasoji et al. (2002); Adi et al. (1990) and Ellis et al. (1985). These studies reported assault as the most common cause of fracture though incidence rate in these studies were around 55%. The assault rates reported by Rix et al. (72.5 percent) in Sydney, Australia (Rix et al., 1991) and Asadi et al (74 percent) in Manchester, United Kingdom, (Asadi and Asadi, 1997) are two of the highest reported. Both stated that the effects of social behaviour and alcohol, complicated by everyday stresses of residing in large city areas are associated with the increase in interpersonal violence. An earlier study by Larsen et al. (1976) in Denmark showed that MVA (57 per cent) were the most common cause of mandibular fractures, and that assaults accounted for 16 per cent. The present study shows that the most common cause of maxillofacial injuries was road traffic accidents, which is consistent with other studies in developing countries (Kamulegeya et al., 2009; Umar et al., 2010; Wimon and Kasemsak, 2008; Sunita Malik et al., 2012).

These etiological differences reflect differences in socioeconomic factors, national infrastructure development (particularly roadways, traffic regulations and legislation), and other behavioral practices such as alcohol consumption and other criminal activities. The high number of maxillofacial injuries attributed to RTA in our study is attributed to inadequate road safety awareness; unsuitable road conditions without expansion of the motor work network; violation of the speed limit; old vehicles without safety features such as antibrusts locks and energy absorbing materials; failure to wear seatbelt or helmets; violation of the right of the way; violation of the highway code; use of alcohol or other
intoxicating agents; inexperienced, young drivers; behavioural disorders and socio-cultural insufficiencies of some drivers. Mid-facial fractures were associated with only 10% cases of mandible fracture. Road traffic accidents were the predominant cause of mandibular fractures associated with a mid-facial fracture, as seen in other studies (Adi et al., 1990; Larsen and Nielsen, 1976). In our study, the most common site of fracture in mandible was paramedian fracture (23.25%). These findings are consistent with the findings of study done by King et al. (2010) which founded a statistical significance between road traffic accidents and parasymphysis fractures. Atanasov (2003), Wong (2000) reported that motorcycle accidents (79.5%) were the major cause for fracture of mandible and the parasymphysis was the most common fracture site. Sunita Malik et al. (2012) also founded parasymphysis as the most common site of fracture in the mandible. But our study was not consistent with the findings of the study conducted by Adekeye (1980), Nair et al. (1986) and Adebayo et al. (2003) who reported the body as the most prominent site. Van Beek et al. (1999) found condyle as the most common site. Chalya et al. (2011) founded angle as the most prominent site of fracture. The most common mandibular fracture combinations in this study were angle/parasymphysis followed closely by angle/body.

These often occurred as a result of assaults, with the mandible presumably fracturing in areas deficient in strength. This finding is consistent to Dongas and Hall (2012) who found parasymphysis with angle. This is in contrast to the study by Abiose (1986) in which the body bilaterally was reported as the most frequent mandibular fracture combination. However, RTA presented to be the most common cause in that study as is the case with our study too. Ogundare et al. (2003) reported body with angle as the commonest combination. More fractures occurred in January than any other month – these mainly occurred in early January, when the winter season is at its full bloom with dense fog leading to RTA and also it coincides with marriage season so indulgence towards alcohol and Assaults increases. Mandibular fractures also prevailed in the month of July, which coincides with the Rainy season in Haryana, India.

There are many treatment regimen in maxillofacial fractures, but the treatment chosen may differ depending on many factors like cost of treatment, affordability by the patient, feasibility in the hospital, doctor’s decision and skill, patient’s willingness to avail the treatment advised - all of which may vary from one country to another. Majority of the patients treated in our hospital had closed reduction with arch bar fixation as the treatment and few patients were treated with open reduction and internal fixation, which is consistent with the studies conducted by Kamulegeya et al. (2009), Chandra (2008), Erol et al. (2004), Kilasara et al. (2006) and Sunita Malik et al. (2008). Open reduction and internal fixation has been reported to be the “gold standard” of treatment of maxillofacial fractures. However, this form of treatment has not become popular in our environment due to lack of expertise (i.e. maxillofacial surgeons) and facilities for open reduction and internal fixation are not readily available; and where available, the cost of treatment is usually quite prohibitive. The average length of hospital stay (LOS) in our study (10.14days) was found to be shorter than that reported by Martins Junior et al. (2010), Chalya et al. (2011).

Conclusion

Road traffic accidents (RTA) was the major etiological factor of maxillofacial injuries in our setting and the young adult males were the main victims. In our study large number of trauma victims with maxillofacial injuries highlights the importance of Dental Surgery unit along with other disciplines for the emergency management of these patients to prevent functional as well as esthetic morbidity.

REFERENCES

