

International Journal of Current Research Vol. 7, Issue, 12, pp.23504-23507, December, 2015

RESEARCH ARTICLE

ACUTE TOXIC EFFECTS OF Zn(SO₄) ON GILL AND LIVER TISSUES OF FRESH WATER CATFISH CLARIAS BATRACHUS (LINN.)

*,1Muneesh Kumar and 2Mansa Ram

¹Department of Zoology Govt. S.S.L. Jain P.G. College, Vidisha, Barkatullah University, Bhopal (M.P.) India ²Department of Zoology Govt. Degree College Bhaderwah, University of Jammu, Jammu, India

ARTICLE INFO

Article History:

Received 15th September, 2015 Received in revised form 07th October, 2015 Accepted 19th November, 2015 Published online 21st December, 2015

Key words:

Gill, Liver, Histopathology, Zinc and *Clarias batrachus*.

ABSTRACT

Heavy metals are a major problem because they are toxic and tend to accumulate in living organisms. This study was carried out with the aims of studying on histopathology of $Zn(SO_4)$ toxicity on gill and liver tissues of catfish *Clarias batrachus* within the period of 96 h. Totally, 140 fishes with mean weight 60 ± 10 g were stocked in 12 aquariums with capacity of 200 L water and divided in to 3 trails including control, 4 ppm and 8 ppm of Zn with 3 replicates. Tissue samples were fixed by bouin's solution and sectioned in 7 μ m based on histological regular method and stained with Hematoxylin and Eosin (H & E) method for microscopic study within the period of 96 h. Results showed some damaged such as hyperplasia, telangiectasis and edema, necrosis of second filaments, jerky movement, aneurism, hyperaemia and fusion of second filaments in gills; and cell atrophy, necrosis, fatty degeneration, hyperaemia and bile stagnation at different treatments in comparison with control. Gill and liver tissue damages were severed with the increase of Zn concentration and days. Therefore, Zn had acute toxicity effects on gill and liver tissues in Catfish at 4 and 8 ppm concentrations.

Copyright © 2015 Muneesh Kumar and Mansa Ram. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Muneesh Kumar and Mansa Ram, 2015. "Acute toxic effects of Zn(SO₄) on gill and liver tissues of fresh water catfish Clarias batrachus (Linn.)", International Journal of Current Research, 7, (12), 23504-23507.

INTRODUCTION

Heavy metals are serious danger for the earth ecosystem. Accumulation of heavy metals in water, air and soil is a major environmental problem. A little amount of zinc is produced from destroying of soils and rocks (Kasraiee, 2009). Naturally, heavy metals formed lower than 1% of body weight and their concentration fluctuations lead to environmental impermanent and disaster in animals (Clark, 1986). Industrial development and environment chemical pollution threatens aquatic animal life. Environmental pollutions with heavy metals were increased in the world and it may be bioaccumulated in fish tissues (Mansour and Sidky, 2002). Therefore, heavy metals are the most important pollutant of aquatic ecosystem that is the cause of major problems for human (Karan et al., 2002). Some metals such as zinc and ferric are needed in little amount for natural development, but some of them such as Cd, Pb and Hg are toxicant at lower concentrations. Therefore, discharge of industrial, mineral, agricultural, house sewage and fuel (Swarup et al., 2006; Patra et al., 2005; Woodling et al., 2001), algaecides and fungicides used in aquaculture (Onwumere and Oladimeji, 1990) are considered as aquatic ecosystem pollutants so that industrial wastewaters are the main source of

pollution (Kaviraj and Das, 1995) that include various kinds of toxic pollutants such as suspended solid, minerals, poisons and pesticides (Kumar and Singh, 2010). Therefore, heavy metal pollutions have harmful effects on environmental equivalent and animal diversity (Vinodhini and Narayanan, 2008). Zinc is one of these pollutants and also added to ponds as a micronutrient for increasing in production of planktons and fish (Adhikari and Ayyappan, 2004). Catfishis a warm water fish that feed on planktons. Zinc may be transferred by plankton to fish and human finally. Higher amount of zinc leads to pathologic disasters in tissues and causes fish death. Some studies were done in Iran that showed the effects of Zn on different tissues of Cyprinus carpio (Mohammad Khanlo Ashaieri, 2003; Rostami et al., 2000; Rostami and Soltani, 2009) in rainbow trout (Oncorhynchus mykiss) (Farangi and hajimoradloo, 2007) and in fingerlings of Acipenser persicus (Moshtaghi et al., 2009; Fathollahi et al., 2010). Therefore, the aim of this study was investigating histopathological effects of Zn acute toxicity on gill and liver tissues in *C. batrachus*.

MATERIALS AND METHODS

Adult and live fish *C. batrachus* were collected from the fish farm Patra and Bhadbhada Bhopal M.P.) brought to the laboratory, cleaned by using 0.1% KMno₄ to avoid dermal

infection. Fishes were acclimatized in glass aquaria for 15 days and were fed with fish food (earthworms) and water in the aquaria was replaced by freshwater at every 24h.

140 fishes with mean weight 60 ± 10 g in 3 treatments (0, 4 and 8 ppm) with 3 replicates were stocked in aquarium with capacity of 200 L water. Firstly, the fishes were adapted to clinical conditions and then introduced to detected concentrations. Desired concentrations of Zn were measured by the Germ/volume method and using C2V2 = C1V1 formula. Firstly, the total required Zn was measured and then dissolved in a specific volume of the whole water for providing stock solution. Then, specific volumes of the stock were poured into aquariums. Samples of gill and liver tissues were collected at 24, 48, 72 and 96 h, fixed by Bouin's solution and dehydrated based on standard method, clarified, embedded, sectioned with 7 μ m diameters by using microtome set (model Letiz 1512, Germany), stained based on Hematoxylin and Eosin (H & E) method (Hallajian, 2010) and were studied by light microscope.

RESULTS

Clinical studies results showed some apparent signs such as fast opening and closing of operculum and mouth, fidgety and air swallowing.

(A) Microscopic study of gill

Some damages including hyperplasia, telangiectasis, and edema, necrosis of second filaments, jerky movement, aneurism, hyperemia and fusion of second filaments in gills at 4 and 8 ppm concentrations than control and severe with increase of concentration and days

(B) Microscopic study of liver

Microscopic studies of liver samples showed some damages such as cell atrophy, cell necrosis, fatty degeneration, hyperemia, bile stagnation and melanomacrophage at 4 and 8 ppm than control (Figures 4, 5 and 6). Liver damages were lower at 4 ppm than 8 ppm of Zn. Therefore, with the increase of zinc sulphate concentration and days up to 72 h liver damages were severe but at 72 & 96h.

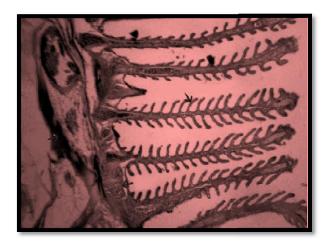


Figure 1. Part of control gill showing structural organization. Note the gill lamella, taste bud and gill arch. H/E x100

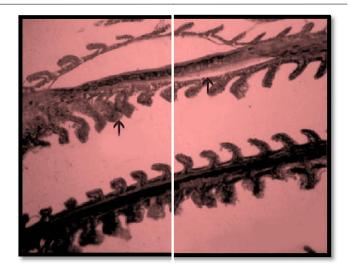


Figure 2. Hyperplasia (H), fusion of gill filaments (F), at 4 ppm of Zn after 12 h. (H & E, 245X)

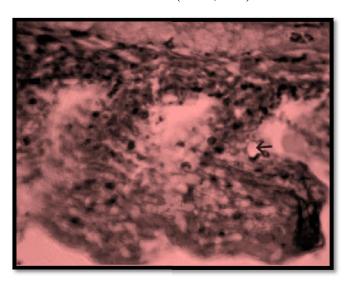


Figure 3. Hyperplasia, haemosiderin (He), fusion of filaments (F) and necrosis of cells (N) at 8 ppm at 96 hrs. H & E, 245X

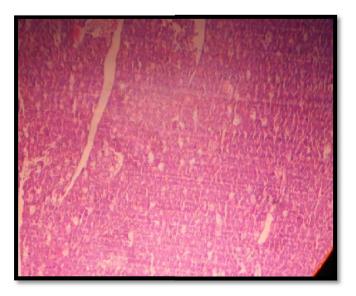


Figure 4. Liver cells at control (H&E, 750X)

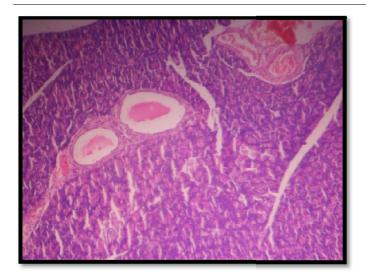


Figure 5. Hyperemia (H), bile stagnation (Bs) (H&E, 750X)

Figure 6. Necrosis of cells (N), fatty degeneration at concentration (F) (H&E, 750X)

DISCUSSION

Heavy metals have an important physiological effects and causes of many diseases if decreased or increased. Zinc is a mineral ingredient and its toxicity has bad effects on the body of fishes (Donmez et al., 1993). Gill structure in Catfish includes primary and second lamella. Secondary lamellas of this fish are long and free from the end of distal. A normal secondary lamella complex was from two thin layers of epithelial cells, blood vessels and row of cells (Athikesavan et al., 2006). Zn has effects on chloride cells, gill morphology and physiology such as pH reduction in blood vessel, decrease in oxygen absorption and heart beat and delays egg hatch time and increase of larvae survival. Zn is resistant to deposition and lingering in environment for long time. Acute damages caused by Zn on gill include lamella fusion, hyperplasia, hyperemia, cell necrosis and telangiectasis after 12 h. These disasters in fish are kind of responses to environment conditions, so that fusion of secondary filaments is due to mucosa glycoprotein on cells (Chreck and Moyle, 1990) which lead to increase exposure of lamella with air or oxygen for collapse and adhesiveness, hyperemia and hyperplasia that indicated an

immune response to chemical matters such as heavy metals (Rostami et al., 2000). Hypertrophy and hyperplasia caused to disaster in gill epithelium cells because of reduction in water flow between gill filaments that decreased respiratory function (Marioara et al., 2009). Some similar effects have been reported by Marioara et al. (2009) and Athikesavan et al. (2006) about Cadmium effects on Silver Carp; Naji et al. (2007) about Zn effects on Common Carp; Gorouiee et al. (2008), Colins and Brown (1998), and Jeney (1992) about frisikuttum. aluminum sulfate effects on Rutilus Onchorhynchus mykiss and Cyprinus carpio, respectively. Fernandez et al. (2008) indicated that long term exposure to heavy metals cause respiration, blood circulation and osmoregulation disasters in fishes. Alvarado et al. (2006) observed that high increase in chloride cells of gills led to thickness in epithelial cells, increase in migration of chloride cells into secondary lamella edge, hypertrophy and fusion of secondary lamella of gills. Liver play a main role in detoxication. Histological studies of liver showed cell atrophy, cell necrosis, hyperemia and bile stagnation after 12 h exposure to Zinc nitrate. Rostami et al. (2000), and Rostami and Soltani (2009) reported cell necrosis, increase of Hemosydrine in Common Carp exposed to Zn. Kamaraju and Ramasamy (2011) indicated that increase in NiCl₂ concentration lead to decrease in glycogen level. Yilmaz et al., (2011) showed that with increase of CdSO₄ concentration in Leuciscus cephalus, some disasters in liver such as fatty degeneration, cell necrosis and kopfer cells were severed according to present study results.

Conclusion

Based on obtained results at present study, zinc sulphate induced some histopathological disasters and leads to fish death. Toxicity rate of Zn in fishes was severe with the increase of concentrations and days.

Acknowledgement

Authors are beholden to Principal Dr. A.K. Gangely S.L.L. Jain P.G. College Vidisha, Bhopal M.P. India for providing laboratory facilities for this research work. This paper forms the part of Ph.D. thesis submitted by author to Barkatullah University, Bhopal M.P. (India).

REFERENCES

Adhikari, S. and Ayyappan, S. 2004. Behavioral role of zinc on primary productivity, plankton and grow of a fresh water teleost *Labeo rohita*. (Hamilton). *Aquaculture*, 231(14):327-336.

Alvarado, N.E. Quesada, I. Hylland, K. Marigomez, I. and Soto, M. 2006. Quantitative changes in metallothionein expression in target cell-types in the gills of turbot (*Scophthalmus maximus*) exposed to Cd, Cu and Zn and after a depuration treatment. *Aquat. Toxicol.*, 77(1):64-77.

Athikesavan, S. Vincent, S. Ambrose, T. and Velmurugan, B. 2006. Nickel induced histopathological changes in the different tissues of freshwater fish, *Clarias batrachus* (Valenciennes). *J. Environ. Biol.*, 27(2):391-395.

Clark, R. 1986. Marine pollution. Clarendon press, Oxford. pp. 64-82.

- Colins, S.P. and Brown, J.A. 1998. Lamellar adhesion and impactions for gaseous exchange in brown trout exposed to low levels of aluminum. Department of Biological Sciences Hatchery Laboratory, University of Exeter, Devon, EX4 4PS, UK, pp. 51-55.
- Donmez, H. Dursun, N. Ozkul, Y. and Demiratas, H. 1993. Increased sister chromatin exchange in workers exposed to occupational lead and zinc. *Biol. Trace Elem. Res.*, 61(1):105-109.
- Farangi, M. and Hajimoradloo, M. 2007. Clinical and histopatholoical acute toxicity signs of Ammonia in Rainbow trout (*Oncorhynchus mykiss*). *J. Azadshahr Azad Univ.*, 4:72-79.
- Fathollahi, R. Khara, H. Pajand, Z. Shenavar, A. Hallajian, A. and Moshtaghi. 2010. Lethal concentration detection (LC50 96 h) of NaCl and its effects on gills of Persian sturgeon (*Acipenser persicus*). *J. Biol. Sci. Azad Univ. Lahijan*, 3:52-65.
- Fernandez, C. Fernandes, A.F. Ferreira, M. and Salgado, M.A. 2008. Oxidative stress response in gill and liver of (*Liza saliens*), from the Esmoriz-Paramos Coastal Lagoon, Portugal. Arch. Environ. *Contam. Toxicol.*, 55:2.
- Gorouiee, H. Jamili, S.H. and Rostami, M. 2008. Acute toxicity of Aluminum sulphate on gill tissues of *Rutilus rutilus*. *J. Educ. Res. Aquat. Anim.*, 79:193-196.
- Hallajian, A. 2010. Histological methods. *Int. Sturgeon Res. Inst.* p. 212.
- Jeney, Z.S. 1992. Acute effect of sub lethal ammonia concentrations on common carp. Effect of ammonia on adrenalin and noradrenalin levels in different organs. *Aquaculture*, 104:139-148.
- Kamaraju S, Ramasamy K 2011. Effect of cadmium chloride on glycogen content in gill, liver and kidney of edible exotic fish *Clarias batrachus*. *Int. J. Curr. Res.*, 33(5):53-57.
- Karan V, Victoric S, Tutundic V, Poleksic V 2002. Functional Enzymes Activity and Histology of Carp after Copper Sulfate Exposure and Recovery. *Ecotoxicol. Environ. Saf.* 40:49-55.
- Kasraiee P 2009. Heavy metals in environment. J. Ecol. ttp://www.drkasraie.blogfa.com/post8aspx.
- Kaviraj A, Das S 1995. Influence of Chelating Agent EDTA, Absorbent Activated Charcoal and Inorganic Fertilizer (single super phosphate) on the Histophatological Changes of Common carp Exposed to Copper sulphate. *Proc. Nata-Sci. India.B. Biol. Sci.*, 65:305-308.
- Kumar P, Singh A 2010. Cadmium toxicity in fish: An overview. *GERF Bull. Biosci.*, 1(1):41-47.
- Mansour SA, Sidky MM 2002. Ecotoxicological studies. 3: Heavy metals contaminating water and fish from Fayoum Governorate, Egypt. *Food Chem.*, 78:15-22.

- Marioara N, Gabi D, Liliana PC, Motmaria BD, Tapalaga I, Lunca M, Liliana B 2009. Pathologycal tissue lesions Induced by Chronic Cadmium intoxication in Catfish Carassius auratus gibelio. Zootehnie Biotechnol., 42(2):84-90
- Mohammad KA 2003. Detection of LC50 and study on acute effects of Zinc on muscle tissues of gonads and liver in Common Carp (*Cyprinus carpio*). MSc Thesis. North Branch of Tehran University. p. 98.
- Moshtaghi B, Nezami SH, Kara H, Pajand Z, Shenavar A, Hallajian A, Fathollahi R 2009. Lethal concentration detection of KMnO₄ and (CuSO₄.5H₂O) in *Acipenser persicus* fingerlings. *J. Biol. Sci. Azad Univ. Lahijan* 11:67-78.
- Naji T, Safaeian SH, Rostami M, Sabrjoo M 2007. Investigation of Zinc Sulphate on gill of Common Carp (*Cyprinus carpio*) fry. *J. Environ. Technol. Sci.*, 2:29-36.
- Onwumere BG, Oladimeji AA 1990. Accumulation of metals and histopathology in *Oreochromis niloticus* exposed to treated NNPC Kaduna (Nigeria) Petroleum Refinery effluent. *Ecotoxicol. Environ. Saf.*, 19:123-134.
- Patra RC, Swarup D, Naresh R, Puneet K, Shekhar P 2005. Cadmium level in blood and milk from animals reared around different polluting sources in India. *Bull. Environ. Contam. Toxicol.*, 76(4):1092-1097.
- Rostami M, Soltani M 2009. Study on chronic effects of copper sulphate on some organs in *Cyprinus carpio. J. Vet. Tehran Univ.* 64:193-198.
- Rostami M, Soltani M, Sasani F 2000. Study on histopathological effects of some heavy metals (CuSO₄, ZnSO₄, HgSO₄ and CdSO₄) on tissues of *Cyprinus carpio*. *J. Vet. Tehran Univ.* 55:1–3.
- Schreck CB, Moyle PB 1990. Methods for fish biology. *Am. Fisher. Soc.*, pp. 491-525.
- Swarup D, Patra RC, Naresh Ram, Puneet K, Pallav S, Balagangatharathilagar M 2006. Deficiency of copper and cobalt in goats reared around lead zinc smelter. *Small Rumin. Res.*, 63(3):309-313.
- Vinodhini R, Narayanan M 2008. Bioaccumulation of heavy metals in organs of fresh water fish *Cyprinus carpio* (Common carp). *Int. J. Environ. Sci. Technol.*, 5(2):179-182
- Woodling JD, Brinkman SF, Horn BJ 2001. Non uniform accumulation of cadmium and copper in kidney's of wild brown trout *Salmo trutta* populations. *Arch. Environ. Contam. Toxicol.*, 40:381-385.
- Yilmaz M, Ersan Y, Koc E, Ozen H, Karaman M 2011. Toxic Effects of Cadmium Sulphate on Tissue Histopathology and Serum Protein Expression in European Chub, *Leuciscus cephalus*. Kafkas Univ. Vet. Fak Derg 17(Suppl A):131-135.
