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INTRODUCTION 
 

Modeling volatility is an important issue of research in 
financial markets. Leptokurtosis and volatility clustering  are 
common observation in financial time series (
1963). It is well known that financial returns have non
distribution which tends to have fat-tailed. Mandelbrot (1963)
strongly rejected normal distribution for data of asset returns, 
conjecturing that financial return processes behave like non
Gaussian stable processes (commonly referred to as “Stable 
Paretian” distributions). many high-frequency financial time 
series have been shown to exhibit the property of long
and Financial time series are often available at a higher 
frequency than the other time series (Harris & Sollis, 2003
The long range dependence or the long memory implies that 
the present information has a persistent impact on future 
counts. Note that the long memory property is related to the 
sampling frequency of a time series. Natural gas and crude oil 
prices are among the most important fuels in the modern 
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BRENT). The aim of this paper is to examine how the dynamics of correlations between the markets 
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economy because of their extensive use by many economic 
sectors. They are complements and substitutes in consumption, 
as well as rivals, in production of electricity.
suggests that crude oil and natural gas prices should be related 
because natural gas and crude oil are complements in 
consumption and also substitutes, as well as rivals, in 
production. Economic variables link natural gas and oil prices 
through both supply and demand. Market behavior argument 
that past changes in the oil price drove c
gas price, but the converse did not appear to occur. 
factors link oil and natural gas prices through both supply and 
demand. The crude oil price and natural gas price are 
characterized by asymmetries. One reason for the asym
interaction is the relative size of each market. Market behavior 
suggests that past changes in the oil price drove changes in the 
natural gas price. In the economic theory, increases in oil 
prices may affect the natural gas market in several ways. 
Natural gas and crude oil are competitive substitutes primarily 
in the industrial sectors of the economy and electric generation. 
According to the National Petroleum Council (NPC) in its 
2003 report estimated that approximately 5 percent of 
industrial boilers can switch between petroleum fuels and 
natural gas (Costello, Huntington, and Wilson, (2005))
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other hand, an increase in crude oil prices resulting from an 
increase in crude oil demand may lead to increased costs of 
natural gas production and development, putting upward 
pressure on natural gas prices.  The empirical evidence on the 
natural gas price – crude oil relationships has been document 
by numerous studies. For example, Pangiotidis and Rutledge 
(2004) found evidence for co-integration between gas and oil 
prices in the United Kingdom in the period spam from 1996 to 
2003. Barcella (1999) suggest the existence of co-integrated 
relationship between oil and gas prices in the US which was 
attributed to long-run economic factors. In addition, there was 
a high correlation of 0.916 between yearly prices of natural gas 
and oil price. 
 
The dynamic relationship between gas markets and crude oil 
has been investigated in the extant literature. For example, 
Alexander (2004) finds strong correlation between returns on 
natural gas futures contracts and crude oil. Villar and Joutz 
(2006) using the cointegration techniques and find a long-run 
(equilibrium) relationship between the Henry Hub natural gas 
price and the WTI oil price. To model the evolution of 
electricity and natural gas prices in the United Kingdom, Benth 
and Kettler (2011) use a bivariate non-symmetric copula and 
find that options prices are significantly influenced by the 
marginal distributions and the copula, along with the 
seasonality of the underlying prices. Some recent studies 
showed that a separation between oil prices and natural gas 
prices had occurred (see, Ramberg and Parsons, 2012). Erdos 
(2012) found that the existing long-term equilibrium 
relationship between oil prices and US natural gas prices 
disappeared after 2009. In addition, Loungani and Matsumoto 
(2012) found that the separation between US natural gas prices 
and oil prices occurred as a result of the oversupply of natural 
gas due to increases in the natural gas production brought on 
by the US shale gas revolution. To analyze the dynamic 
relationships between crude oil and natural gas prices, authors 
chose the co-integration methodology, the ECM (error 
correction model) and the causality of Granger (1969), (see, 
Jabir, Imad. (2006)). In this paper, we empirically investigate 
the time-varying linkages of daily crude oil (WTI and BRENT) 
and natural gas prices (HENRYHUB) from January 01, 2004 
until February 26, 2015. We use a DCC model into a 
multivariate fractionally integrated APARCH framework 
(FIAPARCH-DCC model), which provides the tools to 
understand how financial volatilities move together over time 
and across markets. Conrad et al. (2011) applied a multivariate 
fractionally integrated asymmetric power ARCH 
(FIAPARCH) model that combines long memory, power 
transformations of the conditional variances, and leverage 
effects with constant conditional correlations (CCC) on eight 
national stock market indices returns. The long-range volatility 
dependence, the power transformation of returns and the 
asymmetric response of volatility to positive and negative 
shocks are three features that improve the modeling of the 
volatility process of asset returns. 
 
The flexibility feature represents the key advantage of the 
FIAPARCH model of Tse (1998) since it includes a large 
number of alternative GARCH specifications. Specifically, it 
increases the flexibility of the conditional variance 
specification by allowing an asymmetric response of volatility 

to positive and negative shocks and long-range volatility 
dependence. In addition, it allows the data to determine the 
power of returns for which the predictable structure in the 
volatility pattern is the strongest (see Conrad et al., 2011). 
Although many studies use various multivariate GARCH 
models in order to estimate DCCs among markets during 
financial crises (see Chiang et al., 2007; Celic, 2012; 
Kenourgios et al., 2011), the forecasting superiority of 
FIAPARCH on other GARCH models is supported by Conrad 
et al. (2011), Chkili et al. (2012) and Dimitriou and 
Kenourgios (2013). The present study investigates dynamics 
correlations among oil and natural gas prices from January 01, 
2004 until February 26, 2015. We provide a robust analysis of 
dynamic linkages among their markets that goes beyond a 
simple analysis of correlation breakdowns. The time-varying 
DCCs are captured from a multivariate student-t-FIAPARCH-
DCC model which takes into account long memory behavior, 
speed of market information, asymmetries and leverage 
effects.  The rest of the paper is organized as follows. Section 2 
presents the econometric methodology. Section 3 provides the 
data and a preliminary analysis. Section 4 displays and 
discusses the empirical findings and their interpretation, while 
section 5 provides our conclusions. 
 
Econometric methodology 
 
Univariate FIAPARCH model 
 
The AR(1) process represents one of the most common models 
to describe a time series �� of crude oil and natural gas returns. 
Its formulation is given as 
 
(1 − ��)�� = � + ��,			� ∈ ℕ                                             …. (1) 
 
with 
 

�� = ���ℎ�                                                                         .....(2) 
 
where |�| ∈ [0, +∞[, |�| < 1 and {��} are independently and 
identically distributed (�. �. �. ) random variables with �(��) =
0. The variance ℎ� is positive with probability equal to unity 
and is a measurable function of Σ���, which is the � −algebra 
generated by {����, ����, … }. Therefore, ℎ� denotes the 
conditional variance of the returns {��}, that is: 
 
�[��/Σ���] = � + �����                                                    …..(3) 
 
���[��/Σ���] = ℎ�                                                            …. (4) 
 
Tse (1998) uses a FIAPARCH(1,d,1) model in order to 
examine the conditional heteroskedasticity of the yen-dollar 
exchange rate. Its specification is given as 
 

(1 − ��)�ℎ�
�/�

− �� = [(1 − ��) − (1 − ��)(1 − �)�](1 +

���)|��|
�                                                                 ………….(5) 

 
where � ∈ [0,∞[, |�| < 1, |�| < 1, 0 ≤ � ≤ 1, �� = 1 if 
�� < 0 and 0 otherwise, (1 − �)� is the financial differencing 
operator in terms of a hypergeometric function (see Conrad et 
al., 2011), � is the leverage coefficient, and � is the power 
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term parameter (a Box-Cox transformation) that takes (finite) 
positive values. A sufficient condition for the conditional 
variance ℎ� to be positive almost surely for all � is that � > −1 
and the parameter combination (�, �, �) satisfies the inequality 
constraints provided in Conrad et Haag (2006) and Conrad 
(2010).When � > 0, negative shocks have more impact on 
volatility than positive shocks. The advantage of this class of 
models is its flexibility since it includes a large number of 
alternative GARCH specifications. When � = 0, the process in 
Eq. (5) reduces to the APARCH(1,1) one of Ding et al. (1993), 
which nests two major classes of ARCH models. In particular, 
a Taylor/Schwert type of formulation (Taylor, 1986; Schwert, 
1990) is specified when � = 1, and a Bollerslev(1986) type is 
specified when � = 2.When � = 0and � = 2, the process in 
Eq. (5) reduces to the �������(1, �, 1) specification (see 
Baillie et al., 1996; Bollerslev and Mikkelsen, 1996) which 
includes Bollerslev's (1986) GARCH model (when � = 0) and 
the IGARCH specification (when � = 1) as special cases. 
 
Multivariate FIAPARCH model with dynamic conditional 
correlations 
 
In what follow, we introduce the multivariate FIAPARCH 
process (M-FIAPARCH) taking into account the dynamic 
conditional correlation (DCC) hypothesis (see Dimitriou et al., 
2013) advanced by Engle (2002). This approach generalizes 
the Multivariate Constant Conditional Correlation (CCC) 
FIAPARCH model of Conrad et al. (2011). The multivariate 
DCC model of Engle (2002) and Tse and Tsui (2002) involves 
two stages to estimate the conditional covariance matrix �� . In 
the first stage, we fit a univariate FIAPARCH(1,d,1) model in 

order to obtain the estimations of �ℎ��� . The daily crude oil 
and natural gas returns are assumed to be generated by a 
multivariate AR(1) process of the following form: 
 
�(�)�� = �� + ��                                                          ……..(6) 
 
where 
 
-�� = [��,�]���,…,�: the � −dimensional column vector of 
constants; 

-���,�� ∈ [0,∞[; 

-�(�) = ����{�(�)}: an � × � diagonal matrix ; 

-�(�) = [1 − ���]���,…,� ; 

-|��| < 1 ; 
-�� = [��,�]���,…,�: the � −dimensional column vector of 
returns; 
-�� = [��,�]���,…,�: the � −dimensional column vector of 
residuals. 
 
The residual vector is given by 
 

�� = ��⨀ℎ�
⋀�/�                                                               ….. (7) 

 
where 
 
-⨀: the Hadamard product; 
-⋀: the elementwise exponentiation. 
 

ℎ� = [ℎ��]���,…,�isΣ��� measurable and the stochastic vector 

�� = [���]���,…,� is independent and identically distributed with 
mean zero and positive definite covariance matrix � =
[����]�,���,…,� with ��� = 1 for � = �.Note that �(��/ℱ���) =

0and �� = �(����
′/ℱ���) = ����(ℎ�

⋀�/�
)	�	����(ℎ�

⋀�/�
). ℎ�is 

the vector of conditional variances and ��,�,� = ℎ�,�,�/

�ℎ�,�ℎ�,�∀	�, � = 1,… , � are the dynamic conditional 

correlations. 
 
The multivariate FIAPARCH(1,d,1) is given by 
 

�(�)�ℎ�
⋀�/�

− �� = [�(�) − Δ(�)Φ(�)][Ι� + Γ�]|��|
⋀�     (8) 

 
where |��| is the vector �� with elements stripped of negative 
values. 
 
Besides, �(�) = ����{�(�)} with �(�) = [1 − ���]���,…,�and 
|��| < 1. Moreover, Φ(�) = ����{�(�)} with �(�) =
[1 − ���]���,…,� and |��| < 1. In addition, � = [��]���,…,� 
with �� ∈ [0,∞[ and Δ(�) = ����{�(�)}with �(�) =
[(1 − �)��]���,…,�		∀	0 ≤ �� ≤ 1. Finally, Γ� = ����{�⨀��} 

with � = [��]���,…,� and �� = [���]���,…,� where ��� = 1 if 
��� < 0 and 0 otherwise. 
 
In the second stage, we estimate the conditional correlation 
using the transformed crude oil and henryhub return residuals, 
which are estimated by their standard deviations from the first 
stage. The multivariate conditional variance is specified as 
follows: 
 
�� = ������                                                                      …(9) 
 

where�� = �����ℎ���
�/�

, … , ℎ���
�/�

� denotes the conditional 
variance derived from the univariate AR(1)-FIAPARCH(1,d,1) 
model and �� = (1 − �� − ��)� + ������ + ������ is the 
conditional correlation matrix1. In addition, �� and �� are the 

non-negative parameters satisfying (�� + ��) < 1, � = ����� is 

a time-invariant symmetric � × � positive definite parameter 
matrix with ��� = 1 and ���� is the � × � correlation matrix 
of �� for � = � − �, � − � + 1,… , � − 1. The �, � − �ℎ element 
of the matrix ���� is given as follows: 
 

���,��� =
∑ ��,�����,���
�
���

��∑ ��,���
��

��� ��∑ ��,���
��

��� �

,						1 ≤ � ≤ � ≤ �  ….(10) 

 

where ��� = ���/�ℎ��� is the transformed henry hub and oil 
return residuals by their estimated standard deviations taken 
from the univariate AR(1)-FIAPARCH(1,d,1) model. 
 
The matrix ���� could be expressed as follows: 
 

                                                 
1 Engle (2002) derives a different form of DCC model. The evolution of the 
correlation in DCC is given by: �� = (1 − � − �)�� + ����� + �����, where 
� = (����) is the � ×� time-varying covariance matrix of ��, �� = �[����

�] 

denotes the � × � unconditional variance matrix of ��, while � and � are 
nonnegative parameters satisfying (� + �) < 1. Since �� does not generally 
have units on the diagonal, the conditional correlation matrix �� is derived by 
scaling �� as follows: �� = (����(��))

��/���(����(��))
��/�. 
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���� = ����
�� ��������

′ ����
��                                                …(11) 

 
where ���� is a � × � diagonal matrix with � − �ℎ diagonal 

element given by �∑ ��,���
��

��� � and ���� = (����, … , ����) is 

a � × � matrix, with �� = (���,… , ���)
′. 

 
To ensure the positivity of ���� and therefore of ��, a 
necessary condition is that � ≤ �.Then, �� itself is a 
correlation matrix if ����is also a correlation matrix. The 
correlation coefficient in a bivariate case is given as: 
 

���,� = (1 − �� − ��)��� + �����,� + ��
∑ ��,�����,���
�
���

� �∑ ��,���
��

��� ��∑ ��,���
��

��� �
     …(12) 

 
Data and preliminary analysis 
 
The data comprises daily crude oil prices (WTI and BRENT) 
and natural gas (Henryhub). All data are sourced from the 
(http//www.eia.com). The sample covers a period from January 
01, 2004 until February 26, 2015, leading to a sample size of 
4075 observations. For each series, the continuously 
compounded return is computed as r� = 100	 × ln(p�/p���)for 
t = 1,2, … , T, where p� is the price on day t. The chosen period 
permits to analyse the sensitivity of crude oil returns and 
natural gas return. Summary statistics for crude oil and natural 
gas returns are displayed in Table 1 (Panel A). From these 
tables, Henryhub is the most volatile, as measured by the 
standard deviation of 4.1855%, while BRENT is the least 
volatile with a standard deviation of 2.1019%. Besides, we 
observe that Henryhub has the highest level of excess kurtosis, 
indicating that extreme changes tend to occur more frequently 
for the natural gas price. In addition, all crude oil and gas 
returns exhibit high values of excess kurtosis. To 
accommodate the existence of “fat tails”, we assume student-t 
distributed innovations. Furthermore, the Jarque-Bera statistic 
rejects normality at the 1% level for all crude oil and gas. 
Moreover, all return series are stationary, I(0), and thus 
suitable for long memory tests. Finally, they exhibit volatility 
clustering, revealing the presence of heteroskedasticity and 
strong ARCH effects. In order to detect long-memory process 
in the data, we use the log-periodogram regression (GPH) test 
of Geweke and Porter-Hudak (1983) on two proxies of 
volatility, namely squared returns and absolute returns. The 
test results are displayed in Table 1 (Panel D). Based on these 
tests’ results, we reject the null hypothesis of no long-memory 
for absolute and squared returns at 1% significance level. 
Subsequently, all volatilities proxies seem to be governed by a 
fractionally integrated process. Thus, FIAPARCH seem to be 
an appropriate specification to capture volatility clustering, 
long-range memory characteristics and asymmetry. 
 
Fig. 1 illustrates the evolution of oil prices (WTI, BRENT) and 
natural gas (raw series and returns) during the period from 
January 1, 2004 until February 26, 2015. the observed pattern 
of crude oil and natural gas prices tend to support this theory. 
However, there have been periods in which natural gas and 
crude oil prices have appeared to move independently of each 
other. The figure shows significant variations in the levels 
during the turmoil, especially at the time of Lehman Brothers 
failure (September 15, 2008). Specifically, when the global 
financial crisis triggered, there was a decline for all prices. 

Moreover, Fig. 1 plots the evolution of natural gas returns and 
oil returns over time. The figure shows that all natural gas and 
crude oil trembled since 2008 with different intensity during 
the global financial and European sovereign debt crises. 
Moreover, the plot shows a clustering of larger return volatility 
around and after 2008. 
 

Table 1.  Descriptive statistics 
 
  WTI  BRENT  HENRYHUB 

Panel A: descriptive 
statistics 
Mean 2.07E-02  0.0248  -0.0234 
Maximum 16.414  18.13  39.007 
Minimum -12.827  -16.832  -27.844 
Std. Deviation 2.3366  2.1019  4.1855 
Skewness -0.0100  0.0706  0.6734*** 
 -0.8244  -0.1192  0.0000 
ExcessKurtosis 4.9438***  5.9262***  12.179*** 
 0.0000  0.0000  0.0000 
Jarque-Bera 2964.6***  4262.2***  18212*** 
 0.0000  0.0000  0.0000 
      Panel B: Serial 
correlation and LM-
ARCH tests 

��(��) 69.4576***  46.3902***  156.296*** 
 0.0000  -0.0007  0.0000 

���(��) 2833.19***  100.985***  1455.83*** 
 0.0000  0.0000  0.0000 
ARCH 1-10 61.576***  23.711***  50.185*** 
 0.0000  0.0000  0.0000 
 Panel C: Unit Root 
tests 
ADF test statistic -30.0369*  -30.9284*  -35.7354* 
 (-1.9409)  (-1.9409)  (-1.9409) 
Panel D: long memory 
tests (GPH test- d 
estimates 
 Squared returns 
      

� = ��.� 0.4152  0.4991  0.1943 
 [0.0996]  [0.0888]  [0.0674] 

� = ��.� 0.477  0.4788  0.3559 
 [0.0631]  [0.0804]  [0.0484] 
      
Absolute returns      
 

� = ��.� 
0.4713  0.4434  0.3607 

 [0.0910]  [0.0803]  [0.0763] 
� = ��.� 0.4478  0.3763  0.446 

  [0.0556]  [0.0562]  [0.0526] 

Notes: Crude oil and natural gas returns are in daily frequency. ��and|�| are 
squared log return and absolute log return, respectively. �denotes the 
bandwith for the Geweke and Porter-Hudak’s (1983) test. Observations for all 
series in the whole sample period are 4075. The numbers in brackets are t-
statistics and numbers in parentheses are p-values. ***, **,   and * denote 
statistical significance at 1%, 5% and 10% levels, respectively. 
��(��)and���(��) are the 20th order Ljung-Box tests for serial correlation 
in the standardized and squared standardized residuals, respectively. 

 
This means that markets are characterized by volatility 
clustering, i.e., large (small) volatility tends to be followed by 
large (small) volatility, revealing the presence of 
heteroskedasticity. This market phenomenon has been widely 
recognized and successfully captured by ARCH/GARCH 
family models to adequately describe natural gas and crude oil 
returns dynamics. This is important because the econometric 
model will be based on the interdependence of the markets in 
the form of second moments by modeling the time varying 
variance-covariance matrix for the sample. 
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Fig. 1. Oil prices (WTI, BRENT) and natural gas (Henryhub) behavior over time 

 

 
 

Figure 2. Henry Hub, West Texas Intermediate and BRENT Prices Histogram and Autocorrelogram Functions 
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Figure 3. Returns of Henry Hub, West Texas Intermediate and BRENT Prices Histogram and Autocorrelogram Functions 

 

 
 

Figure 4. ACF and PACF functions of squared return series 
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Figure 5. The DCC behavior over time 
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The autocorrelation functions (ACFs) and probability 
distributions for the series are presented in Figure 2. 
Histograms summarize the frequency of occurrence that a 
variable falls within a certain range of values. Histograms 
provide insights into the standard error, the probability 
distribution and the mean of a given variable. Histograms of  
Henry Hub, WTI and BRENT  prices are presented in the top 
panels of Figure 2, with a plot of a normal distribution 
superimposed over the histogram and a smooth line generated 
from the histogram. Figure 3 contains histograms and ACFs 
for the return of both price series. In each case, the 
differencing transformation appears to have resolved the non 
stationarities in the three series for the most part. In both cases, 
the probability distributions of the differenced series appear to 
be approximately normally distributed. The autocorrelations 
are statistically insignificant at most lags. These results support 
the concept that the levels of the price series are integrated 
processes of order one, I(1) and unit root. In order to examine 
whether the natural gas returns and oil (RWTI, RBRENT) 
exhibit a long memory (persistence), autocorrelation and 
partial autocorrelation functions of the squared returns are 
plotted in Figure 4. As can be seen in Figure 4, squared values 
of the returns are positive an significant up to 20 lags. They 
also exhibit a very slow decay with a hyperbolic rate, implying 
the volatility of gas returns and crude oil have a long memory. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Empirical results 
 
The univariate FIAPARCH estimates 
 
In order to take into account the serial correlation and the 
GARCH effects observed in our time series data, and to detect 
the potential long range dependence in volatility, we estimate 
the student2-t-AR(0)-FIAPARCH(1,d,1)3 model defined by 
Eqs. (1) and (5). Table 2 reports the estimation results of the 

                                                 
2 The �� random variable is assumed to follow a student distribution (see 
Bollerslev, 1987) with � > 2 degrees of freedom and with a density given by: 

�(��, �) =
Γ(��

�
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whereΓ(�) is the gamma function and � is the parameter that describes the 
thickness of the distribution tails. The Student distribution is symmetric around 
zero and, for � > 4, the conditional kurtosis equals 3(� − 2)/(� − 4), which 
exceeds the normal value of three. For large values of �, its density converges 
to that of the standard normal. 
For a Student-t distribution, the log-likelihood is given as: �������� =
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where� is the number of observations, � is the degrees of freedom, 2 <  � ≤
∞ and �(. ) is the gamma function. 
3 The lag orders(1, �, 1)and (0,0) for FIAPARCH and ARMA models, 
respectively, are selected by Akaike (AIC) and Schwarz (SIC) information 
criteria. The results are available from the author upon request. 

Table 2. Univariate FIAPARCH(1,d,1) models (MLE) 

 
  WTI   BRENT   HENRYHUB 

Coefficient t-prob  Coefficient t-prob  Coefficient t-prob 

Estimate         

� 0.0475 0.1368  0.0254 0.3947  -0.0480 0.3360 

� 0.0672* 0.063  -0.0211 0.6440  0.1031*** 0.0016 

� 0.4760*** 0.0000  0.3234*** 0.0001  0.4158*** 0.0000 

� 0.3891*** 0.0000  0.3504*** 0.0000  -0.0700 0.1582 

� 0.7463*** 0.0000  0.6323*** 0.0000  0.8958*** 0.0000 

� 0.3590*** 0.0036  0.3347** 0.0154  0.3318** 0.0745 

� 1.6992*** 0.0000  2.0874*** 0.0000  1.1486*** 0.0000 

� 8.6049*** 0.0000  8.0966*** 0.0000  5.9632*** 0.0000 

Diagnostics         

��(��) 14.8132 0.7869  20.4115 0.4324  69.0225*** 0.0000 

���(��) 16.4316 0.5624  23.852 0.1599  47.2973*** 0.0001 

Notes: For each of the five exchange rates, Table 2 reports the Maximum Likelihood Estimates (MLE) for the student-t-FIAPARCH(1,d,1) model. 
��(��)and���(��) indicate the Ljung-Box tests for serial correlation in the standardized and squared standardized residuals, respectively. �denotes the the t-
student degrees of freedom.parameter ***, ** and * denote statistical significance at 1%, 5% and 10% levels, respectively. 

 

Table 3. Estimation results from the bivariate FIAPARCH(1,d,1)-DCC model 
 

  HENRYHUB-WTI   HENRYHUB-BRENT 

coefficient t-prob  coefficient t-prob 
Panel A: Estimates of Multivariate DCC      
� 0.4305** 0.0517  0.0054 0.7594 
� 0.5100*** 0.0099  0.9038*** 0.0000 
� 8.8107*** 0.0000  8.8394*** 0.0000 
Panel B : Diagnostic tests      
�������(��) 106.116** 0.0226  85.7250*** 0.0000 
��������(��) 92.2487 0.1291  46.1517 0.1708 
�� −������(��) 106.106** 0.0226  85.6810*** 0.0000 
�� −�������(��) 92.1857 0.1300   46.1393 0.1711 

Notes: The superscripts ***, ** and * denote the statistical significance at 1%, 5% and 10% levels, respectively.� indicates the student’s distribution’s degrees of 
freedom. �������	(��)and��������(��) denote the Hosking's Multivariate Portmanteau Statistics on both standardized and squared standardized Residuals. 
�� −������	(��)and�� −�������(��) indicate the Li and McLeod's Multivariate Portmanteau Statistics on both Standardized and squared standardized 
Residuals. 
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univariate FIAPARCH(1,d,1) model for each gas and oil return 
series of our sample. The estimates of the constants in the 
mean are statistically no significant at 1% level or better for all 
the series. Besides, the constants in the variance are significant 
except for the BRENT. In addition, for all Crude oil and gas 
prices, the estimates of the leverage term (γ) are statistically 
significant, indicating an asymmetric response of volatilities to 
positive and negative shocks. This finding confirms the 
assumption that there is negative correlation between returns 
and volatility. Moreover, the estimates of the power term (δ) 
are highly significant for oil and gas prices and ranging from 
1.1486 to 2.0874. Conrad et al. (2011) show that when the 
series are very likely to follow a non-normal error distribution, 
the superiority of a squared term (δ = 2) is lost and other 
power transformations may be more appropriate. Thus, these 
estimates support the selection of FIAPARCH model for 
modeling conditional variance of oil and gas returns. Besides, 
all crude oil and gas display highly significant differencing 
fractional parameters(d), indicating a high degree of 
persistence behavior. This impliesthat the impact of shocks on 
the conditional volatility of returns consistently exhibits a 
hyperbolic rate of decay. Interestingly, the highest power term 
is obtained for WTI, one is characterized by the highest degree 
of persistence. In all cases, the estimated degrees of freedom 
parameter (v) is highly significant and leads to an estimate of 
the Kurtosis which is equal to 3(v − 2)/(v − 4) and is also 
different from three. 
 
In addition, all the ARCH parameters (ϕ) satisfy the set of 
conditions which guarantee the positivity of the conditional 
variance. Moreover, according to the values of the Ljung-Box 
tests for serial correlation in the standardized and squared 
standardized residuals, there is no statistically significant 
evidence, at the 1% level, of misspecification in almost all 
cases except for the natural gas price (HENRYHUB). 
Numerous studies have documented the persistence of 
volatility in stock and exchange rate returns (see Ding et al., 
1993; Ding et Granger, 1996, among others).The majority of 
these studies have shown that the volatility process is well 
approximated by an IGARCH process. Nevertheless, from the 
FIAPARCH estimates reported in Table 2, it appears that the 
long-run dynamics are better modeled by the fractional 
differencing parameter. 
 
To test for the persistence of the conditional heteroskedasticity 
models, we examine the Likelihood Ratio (LR) statistics for 
the linear constraints �	 = 	0(APARCH(1,1) model) and 
� ≠ 	0 (FIAPARCH(1,d,1) model). We construct a series of 
LR tests in which the restricted case is the APARCH(1,1) 
model (� = 0) of Ding et al. (1993). Let �� be the log-
likelihood value under the null hypothesis that the true model 
is APARCH(1,1) and � the log-likelihood value under the 
alternative that the true model is FIAPARCH(1,d,1). Then, the 
LR test,2(� − ��), has a chi-squared distribution with 1 degree 
of freedom when the null hypothesis is true. For reasons of 
brevity, we omit the table with the test results, which are 
available from the author upon request. In summary, the LR 
tests provide a clear rejection of the APARCH(1,1) model 
against the FIAPARCH(1,d,1) one for natural gas and oil 
prices. Thus, purely from the perspective of searching for a 
model that best describes the volatility in the series, the 

FIAPARCH(1,d,1) model appears to be the most satisfactory 
representation. This finding is important since the time series 
behavior of volatility could affect asset prices through the risk 
premium (see Christensen and Nielsen, 2007; Christensen            
et al., 2010; Conrad et al., 2011). With the aim of checking for 
the robustness of the LR testing results discussed above, we 
apply the Akaike (AIC), Schwarz (SIC), Shibata (SHIC) or 
Hannan-Quinn (HQIC) information criteria to rank the ARCH 
type models. According to these criteria, the optimal 
specification (i.e., APARCH or FIAPARCH) for all crude oil 
and gas prices is the FIAPARCH one. The two common values 
of the power term (�) imposed throughout much of the 
GARCH literature are � = 2 (Bollerslev's model) and � = 1 
(the Taylor/Schwert specification). According to Brooks et al. 
(2000), the invalid imposition of a particular value for the 
power term may lead to sub-optimal modeling and forecasting 
performance. For that reason, we test whether the estimated 
power terms are significantly different from unity or two using 
Wald tests (results not reported). 
 
The bivariate FIAPARCH(1,d,1)-DCC estimates 
 
The analysis above suggests that the FIAPARCH specification 
describes the conditional variances of the oil and natural gas 
prices well. Therefore, the multivariate FIAPARCH model 
seems to be essential for enhancing our understanding of the 
relationships between the (co)volatilities of economic and 
financial time series. In this section, within the framework of 
the multivariate DCC model, we analyze the dynamic 
adjustments of the variances for the oil and gas prices. Overall, 
we estimate two bivariate specifications for our analysis. Table 
3(Panels A and B) reports the estimation results of the 
bivariate student-t-FIAPARCH(1,d,1)-DCC model. The 
ARCH and GARCH parameters (a and b) of the DCC(1,1) 
model capture,respectively, the effects of standardized lagged 
shocks and the lagged dynamic conditional correlations effects 
on current dynamic conditional correlation. They are 
statistically significant at the 5% level, except for the AR 
parameter between (HENRYHUB-BRENT), indicating the 
existence of time-varying correlations. Moreover, they are 
non-negative, justifying the appropriateness of the FIAPARCH 
model. When a	 = 	0and b	 = 	0, we obtain the Bollerslev’s 
(1990) Constant Conditional Correlation (CCC) model. As 
shown in Table 3, the estimated coefficients a and b are 
significantlypositive and satisfy the inequality a	 + 	b < 1 in 
each of the pairs of gas and oil prices. Besides, the t-student 
degrees of freedom parameter (v)is highly significant, 
supporting the choice of this distribution. The statistical 
significance of the DCC parameters (a	and b) reveals a 
considerable time-varying comovement and thus a high 
persistence of the conditional correlation. The sum of these 
parameters is close to unity. This implies that the volatility 
displays a highly persistent fashion. Since a	 + 	b < 1, the 
dynamic correlations revolve around a constant level and the 
dynamic process appears to be mean reverting. The 
multivariate FIAPARCH-DCC model is so important to 
consider in our analysis since it has some key advantages. 
First, it captures the long range dependence property. Second, 
it allows obtaining all possible pair-wise conditional 
correlation coefficients for the gas and oil returns in the 
sample. Third, it’s possible to investigate their behavior during 
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periods of particular interest, such as periods of the global 
financial and European sovereign debt crises. Fourth, the 
model allows looking at possible financial contagion effects 
between international foreign exchange markets. Finally, it is 
crucial to check whether the selected crude oil and gas price 
series display evidence of multivariate Long Memory ARCH 
effects and to test ability of the Multivariate FIAPARCH 
specification to capture the volatility linkages among market 
prices. Kroner and Ng (1998) have confirmed the fact that only 
few diagnostic tests are kept to the multivariate GARCH-class 
models compared to the diverse diagnostic tests devoted to 
univariate counterparts. Furthermore, Bauwens et al. (2006) 
have noted that the existing literature on multivariate 
diagnostics is sparse compared to the univariate case. In our 
study, we refer to the most broadly used diagnostic tests, 
namely the Hosking's and Li and McLeod's Multivariate 
Portmanteau statistics on both standardized and squared 
standardized residuals. According to Hosking (1980), Li and 
McLeod (1981) and McLeod and Li (1983) autocorrelation test 
results reported in Table 3 (Panel B), the multivariate 
diagnostic tests allow accepting the null hypothesis of no serial 
correlation on squared standardized residuals and thus there is 
no evidence of statistical misspecification. 
 
 
Fig. 5 illustrates the evolution of the estimated dynamic 
conditional correlations dynamics among oil and natural gas 
prices. The different path of the estimated DCCs displays 
fluctuations for all pairs of natural gas and oil prices across the 
phases of the global financial and European sovereign debt 
crises, suggesting that the assumption of constant correlation is 
not appropriate. The above findings motivate a more extensive 
analysis of DCCs, in order to capture contagion dynamics 
during different phases of the two crises. 

 
Conclusion 
 
This study examines the dynamic correlations among oil prices 
namely WTI and BRENT and natural gas price 
(HENRYHUB). Specifically, we employ a multivariate 
FIAPARCH-DCC model, during the period from January 01, 
2004 to February 26, 2015, focusing on the estimated dynamic 
conditional correlations among the oil and gas markets. This 
approach allows investigating the second order moments 
dynamics of crude oil and gas prices taking into account long 
range dependence behavior, asymmetries and leverage effects. 
The FIAPARCH model is identified as the best specification 
for modeling the conditional heteroscedasticity of 
individualtime series. We then extended the above univariate 
GARCH models to a bivariate framework with dynamic 
conditional correlation parameterization in order to investigate 
the interaction between oil and gas prices. Our results 
document strong evidence of time-varying comovement, a high 
persistence of the conditional correlation (the volatility 
displays a highly persistent fashion) and the dynamic 
correlations revolve around a constant level and the dynamic 
process appears to be mean reverting. More interestingly, the 
univariate FIAPARCH models are particularly useful in 
forecasting market risk exposure for synthetic portfolios of 
stocks and currencies. Our out-of-sample analysis confirms the 
superiority of the univariate FIAPARCH model and the 

bivariate DCC-FIAPARCH model over the competing 
specifications in almost all cases. Economic theory suggests 
that there is a relation between oil prices and natural gas, 
because the influence of an increase in oil prices may conflict 
in its effects on natural gas supply, and therefore, prices. 
Production of natural gas may increase as a co-product of oil, 
or may decrease as a result of higher-cost productive resources. 
While the net effect of an increase in oil prices on natural gas 
supply may be ambiguous, the effect on natural gas demand is 
clear, resulting in a positive relation between oil and natural 
gas prices. 
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