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The steady, two dimensional, Flakner
in the presence of viscous dissipation and convective boundary condition 
transformations, the governing equations have been transformed into a system of ordinary differential 
equations. These differential equations are highly nonlinear which cannot be solved analytically. 
Therefore, bvp4c MATLAB solver has been used for solving it.
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for different values of the governing parameters, namely, consistency parameter, Falkner
parameter, power law index parameter, convective parameter, wedge velocity parameter, 
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INTRODUCTION 
 
Motivated by significant applications in packed bed reactor, 
geothermal system, extractions of crude oil, water or nuclear 
pollution, and so forth, the wedge flow over shaped bodies has 
attracted the attention of various researchers as the early 
formulation given by Falkner and Skan (1931). Later, 
Asaithambi (1998) analyzed the Falkner-Skan equation by 
using finite difference scheme. Postelnicu and Pop (2011) 
studied the two-dimensional laminar boundary layer flow of a 
power-law fluid past a permeable stretching wedge beneath a 
variable free stream. Hendi and Hussain (2012) 
MHD Falkner-Skan flow over a porous surface.
number of non-Newtonian fluid models have been proposed. In 
the literature, the vast majority of non-Newtonian fluid models 
are concerned with simple models like the power law and grade 
two or three. Eldabe and Salwa (1995) 
Newtonian Casson fluid flow between two rotating cylinders 
under a radial magnetic field. Dash et al. (1996) studied the 
Casson fluid flow in a pipe filled with a homoge
medium.  
 
*Corresponding author: Gangadhar, K. 
Department of Mathematics, Acharya Nagarjuna University, Ongole, 
Andhra Pradesh -523001, India. 

ISSN: 0975-833X 

 

Article History: 
 

Received 29th December, 2015 
Received in revised form  
17th January, 2016 
Accepted 15th February, 2016 
Published online 16th March, 2016 
 

Citation: Bharathi Devi and Gangadhar, 2016. “Effect of viscous dissipation on Falkner
with convective boundary condition”, International Journal of Current Research,

Key words:  
 

Power – Law fluid, Variable consistency,  
Stretching/shrinking wedge, Suction/ 
injection, Convective boundary condition,  
Viscous dissipation. 
 

 

 

                                                  

 

 

 
 

RESEARCH ARTICLE 
 

EFFECT OF VISCOUS DISSIPATION ON FALKNER-SKIN STRETCHING AND SHRINKING WEDGE 
LAW FLUID WITH CONVECTIVE BOUNDARY CONDITION

 

Bharathi Devi, M. and *,2Gangadhar, K. 
 

artment of Mathematics, RISE Group of Institutions, Ongole, A.P
Department of Mathematics, Acharya Nagarjuna University, Ongole, Andhra Pradesh 

  
    

ABSTRACT 

The steady, two dimensional, Flakner-Skan stretching and shrinking wedge flow of a power law fluid 
in the presence of viscous dissipation and convective boundary condition 
transformations, the governing equations have been transformed into a system of ordinary differential 

uations. These differential equations are highly nonlinear which cannot be solved analytically. 
Therefore, bvp4c MATLAB solver has been used for solving it. Numerical results are obtained for the 

friction coefficient and the local Nusselt number as well as the velocity and temperature profiles 
for different values of the governing parameters, namely, consistency parameter, Falkner
parameter, power law index parameter, convective parameter, wedge velocity parameter, 
suction/injection parameter and Eckert number.  

This is an open access article distributed under the Creative Commons Att
use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Motivated by significant applications in packed bed reactor, 
geothermal system, extractions of crude oil, water or nuclear 
pollution, and so forth, the wedge flow over shaped bodies has 
attracted the attention of various researchers as the early 

n given by Falkner and Skan (1931). Later, 
Skan equation by 

Postelnicu and Pop (2011) 
inar boundary layer flow of a 

law fluid past a permeable stretching wedge beneath a 
(2012) discussed the 

Skan flow over a porous surface. Thus, a 
Newtonian fluid models have been proposed. In 

Newtonian fluid models 
are concerned with simple models like the power law and grade 

wa (1995) studied the non-
Newtonian Casson fluid flow between two rotating cylinders 

. (1996) studied the 
Casson fluid flow in a pipe filled with a homogeneous porous 
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Boyd et al. (2007) studied the Casson and Carreau
non-Newtonian blood models in steady and oscillatory flow 
using the lattice Boltzmann method. Nadeem
investigated the magneto hydrodynamic flow of a Casson fluid 
over an exponentially shrinking sheet. Kandasamy and Pai 
(2012) studied the Entrance region flow of casson fluid in a 
circular tube. Bahmani (2013) studied the power
velocity profile between two parallel plates.
investigated the boundary layer flow of power
power-law stretching surface. Bachok
the heat transfer characteristics of steady two
stagnation-point flow of a copper (Cu)
permeable stretching/shrinking sheet.
studied the Boundary-layer forced convection flow of a
fluid past a symmetric wedge.
investigated the laminar flow of a power
permeable shrinking sheet of constant surface temperature and 
also found that the heat transfer rate at the surface 
increases with an increase in the Prandtl number.
investigated the radiative effect on free convection flows in 
porous medium in the presence of pressure work and viscous 
dissipation. Hamid et al. 
heating and viscous dissipation on the magnetohydrodynamics 
(MHD) Marangoni convection boundary layer flow and 
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(2007) studied the Casson and Carreau- Yasuda 
Newtonian blood models in steady and oscillatory flow 

using the lattice Boltzmann method. Nadeem et al. (2012) 
investigated the magneto hydrodynamic flow of a Casson fluid 
over an exponentially shrinking sheet. Kandasamy and Pai 
(2012) studied the Entrance region flow of casson fluid in a 

(2013) studied the power-law fluids 
ocity profile between two parallel plates. Mudassar (2013) 

investigated the boundary layer flow of power-law fluid over a 
Bachok et al. (2013) investigated 

the heat transfer characteristics of steady two-dimensional 
point flow of a copper (Cu)-water nanofluid over a 

permeable stretching/shrinking sheet. Mukhopadhyay (2013) 
layer forced convection flow of a Casson 

fluid past a symmetric wedge. Yacob and Ishak (2014) 
investigated the laminar flow of a power-law fluid over a 
permeable shrinking sheet of constant surface temperature and 
also found that the heat transfer rate at the surface                  

eases with an increase in the Prandtl number. Rashad (2009) 
investigated the radiative effect on free convection flows in 
porous medium in the presence of pressure work and viscous 

studied the effects of the Joule 
and viscous dissipation on the magnetohydrodynamics 

(MHD) Marangoni convection boundary layer flow and 

 

INTERNATIONAL JOURNAL  
    OF CURRENT RESEARCH  

skin stretching and shrinking wedge flow of a power – Law fluid 



concluded that the combined effects of the Joule heating and 
viscous dissipation have significantly influenced the surface 
temperature gradient. Sheikholeslami et al. (2011) studied the 
hydromagnetic flow between two horizontal plates in a rotating 
system, where the lower plate is a stretching sheet and the 
upper is a porous solid plate in the presence of viscous 
dissipation and concluded that the increasing Prandtl number in 
presence of viscous dissipation leads to temperature increasing 
between two plates, while in absence of viscous dissipation, the 
changes are inverse. Gangadhar (2012) conclude that the local 
skin friction coefficient increases and local Nusselt number 
coefficient decreases in the presence of viscous dissipation. 
Kumar (2013) analyzed the problem of MHD mixed convective 
flow of a micropolar fluid with the effect of Ohmic heating, 
radiation and viscous dissipation over a chemically reacting 
porous plate with constant heat flux. Kabir et al. (2013) 
investigated the effects of the viscous dissipation on MHD 
natural convection flow along a uniformly heated vertical wavy 
surface with heat generation. Gangadhar (2015) investigated 
the radiation, heat generation viscous dissipation and 
magnetohydrodynamic effects on the laminar boundary layer 
about a flat-plate in a uniform stream of fluid (Blasius flow), 
and about a moving plate in a quiescent ambient fluid (Sakiadis 
flow) both under a convective surface boundary condition. 
Khilap Singh and Manoj Kumar (2015) investigated the study 
of heat and mass transfer characteristics of the free convection 
on a vertical plate in porous media with variable wall 
temperature and concentration in a doubly stratified and 
viscous dissipating micropolar fluid in presence of chemical 
reaction, heat generation and Ohmic heating. 
 
Makinde & Olanrewaju (2010) studied the effects of thermal 
buoyancy on the laminar boundary layer about a vertical plate 
in a uniform stream of fluid under a convective surface 
boundary condition. Very more recently, Olanrewaju et al 
(2011) studied the Radiation and viscous dissipation effects for 
the Blasius and Sakiadis flows with a convective surface 
boundary condition. Gangadhar (2013) investigated soret and 
dufour effects on hydro magnetic heat and mass transfer over a 
vertical plate with a convective surface boundary condition and 
chemical reaction. The present study investigates the steady, 
two dimensional, Flakner-Skan stretching and shrinking wedge 
flow of a power law fluid in the presence of viscous dissipation 
and convective boundary condition. Using the similarity 
transformations, the governing equations have been 
transformed into a set of ordinary differential equations, which 
are nonlinear and cannot be solved analytically, therefore, 
bvp4c MATLAB solver has been used for solving it. The 
results for velocity, microrotation and temperature functions 
are carried out for the wide range of important parameters 
namely; consistency parameter, Falkner-Skin flow parameter, 
power law index parameter, convective parameter, wedge 
velocity parameter, suction/injection parameter and Eckert 
number. The skin friction, the couple wall stress and the rate of 
heat transfer have also been computed. 
 
Mathematical formulation 
 
Consider a two dimensional steady viscous incompressible 
boundary layer flow due to non-Newtonian fluid past a porous 
stretching and shrinking wedge. It is assumed that free stream 

velocity is of the form   0

m

e
x

u x U
L

 
  

    

. It is further assumed 

that wedge velocity is of the form   0

m

w

x
u x U

L


 
  

 
. 

Under the above assumptions, the partial differential equations 
and the corresponding boundary conditions govern the problem 
are given by: 
 
Continuity equation 
 

0
u v

x y

 
 

 
                                                         ……..(1) 

 
Linear momentum equation 
 

1
1

n

e
e

u u du u u
u v u K

y y yx y d x 

     
    

      

    ……(2) 

Energy equation 
22

2

1

p

T T T u
u v

y c yx y




    
    

    
                   .....…(3) 

 
The boundary conditions for the velocity, Angular Velocity and 
temperature fields are   
 

   0 , ,w f w

x T
u U v v x k h T T

L y


 
      

 
       at    

0y       

  ,eu u x T T         as   y             ………………(4) 

 

Where u  and v  are the velocity components in the x  - and 

y  - directions, respectively, T is the fluid temperature inside 

boundary layer, ρ is the fluid density, cp is the specific heat, 

/ pk c  is the thermal diffusivity, 0wv  is the suction 

velocity while 0wv   is the injection velocity, k is the thermal 

conductivity,
 fh is the convective heat transfer coefficient, T

is the free stream temperature, and n is the index in the power-
law variation of a non-Newtonian fluid. It was pointed out by 
Postelnicu and Pop (2011) that Equation (2) governs the flow 
of a shear-thinning or pseudoplastic fluid for the case n < 1 and 

a shear-thickening or dilatants fluid for the case n > 1,  K  is 

consistency of the fluid, wT is the wall temperature and k is the 

thermal conductivity. 
 
We assumed the Reynold’s model for the variation of 
consistency with temperature be (Szeri, 1998; Massoudi & 
Phuoc, 2004) 
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  0 exp( )K K M  
       

 ……………………………(5) 

 
Here K0 is the ambient fluid dynamic consistency; M is a 
consistency variation parameter.   
 
We now introduce the following dimensionless variables to 
reduce the number of independent variables and the number of 
equations,  

 
1 1

1 1

0 0 0

Re Re
, , , , ,

n n
e

e

w

ux y u v T T
x y u v u

L L U U U T T


 





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
……

(6) 

 

Where

2
0Re

n nU L





  is the generalized Reynolds number 

based the characteristic length L.  

The stream function ( , )x y  defined ,u v
y x

  
  
 

satisfy the continuity equation (1) automatically. 
We have 
 

12 2 2 3 2
2 1 0

2 2 3 2
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m K M
mx n M
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
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...(7) 
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      …(8) 
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1
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( )Re
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 
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 at y=0 ..(9) 

 

, 0mx
y





 


    as

 
y

                             …….
(10) 

 
In order to find similarity transformations, we consider 
following simplified form of the one-parameter group (Uddin 
et al., 2012; Mutlag et al., 2012; Na, 1979) 
 

3 51 2 4

6 7

*, *, *, *, *

*, *,

c cc c c
f f

c c
w w p p

x e x y e y e e h e h

v e v c e c
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 

      

 
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 

  …...(11) 

 
where c1,c2 , c3 ,..., c7 are constant and ε is the parameter of 
the group. Substituting Equation (10) into the Equations (7)-
(9), we will then obtain the following relationship among c ' s 
 

1 3 2 5 3 4

6 3 7 3

1 2 1
, , 0

2 1 2 1

2 3 3 1
,

2 1 2 1

n mn m
c c c c c c

mn m mn m
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       
    

             

 (12) 

 
Note that θ* = θ, i.e., θ is invariants. The characteristic 
equations are as follows: 
 

1

1

1 2 1 2 1

2 1 2 1 2 1

2 3 3 1

2 1 2 1

pw

w p

dx dy d dD
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x y D
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dcdv
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
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          
     

          

 
       

   
      

 

                                                             ………….………….(13) 
 
Solving the above equations, the following similarity 
transformations are obtained 
 

   

 

2 1 2 1 2 1
1 1 1

0

2 3 3 1

1 1
00

, , , ( )

, ( )

mn m mn m mn m
n n n

f f

mn m n m mn n

n n
w w p p

x y x f h x h

v x v c x c

     
          
   

     

    

 

   

 
  

(14) 

 

where      00 0
, ,f w ph v c are constant convective heat 

transfer coefficient, velocity of suction/injection and the 
specific heat. Using Equation (14) in Equations (7)-(10), we 
obtain following nonlinear system of ordinary differential 
equations 
 

   
1 22 1

''' '' ' '' exp( ) '' ' 0
( 1)

n nM mn m m m
f f f M ff f

n n n n n
 

   
     

 
                                                 …………………………….…..(15) 
 

2Pr (2 1)
'' ' Pr '' 0

1
m

m

mn m
f Ecf

n
 

 
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
                 (16) 

 
The boundary conditions become, 

       
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1
0 , ' 0 , ' 0 1 (0)

2 1

' 1, 0

w

n
f f f Bi

mn m

f

  




      

 

   

          

                                                          ………………………….(17) 
 

Where

2

1
0 Re

Pr
n

m

LU







   is the modified Prandtl number (for 

power law fluids),  
1

1

0
Ren

fh L
Bi

k





 is the dimensionless 

convective parameter, 

 

2
2 1
0

2

0

Re n

p

U
Ec

c L




 is the Eckert number and

 
1

1
0

0

( 1) Re n
w

w

n v
f

U


 the suction/injection parameter 

respectively. Note that all parameters are free from x which 
confirms the true. Here primes denote differentiation with 
respect to η. 
 
It is to be noted that for M = Ec = 0, n =1our problem reduces 
to Jiji (2009) in this case the Equations (15)-(16) are 
 

21
''' '' ' 0

2

m
f ff mf m


   

 
  …………………………..(18) 
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Pr ( 1)
'' ' 0

2
m m

f 


 
                                                 

 (19) 

 
Note that when m = M = Ec = 0, n = 1 then Equation (18) 
conforms to Equation (2,15) in Ishak and Bachok (2009) and 
the system of ordinary differential Equations (15)-(16) is the 
same as that obtained by Aziz (2009) when m = M = Ec = 0, n 
= 1. Expressions for the quantities of physical interests, the 
skin friction factor and the rate of heat transfer can be found 
from the following definitions: 

  2

00

,
( )

n

fx x
e w yy

K u x T
C Nu

T Ty yu x  

      
    

   
   (20) 

Using (2.6) into (2.20) we get, 
 

     
1 1

1 1Re ''(0) , Re '(0)
n

n n
x xf x x

C f Nu 


     (21) 

where  

2

Re

nn
e

x

u x





  is the local Reynolds number.
 

 
Solution of the problem 
 
For solving Eqs. 15 – 17, a step by step integration method i.e. 
Runge–Kutta method has been applied. For carrying in the 
numerical integration, the equations are reduced to a set of first 
order differential equation. For performing this we make the 
following substitutions: 
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n
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         

  
    


      

 

     
 
In order to carry out the step by step integration of Eqs. 
Refspseqn 15-17, Gills procedures as given in Ralston and Wilf 
(1960) have been used. To start the integration it is necessary to 

provide all the values of 1 2 3 4, , ,y y y y at 0  from which 

point, the forward integration has been carried out but from the 

boundary conditions it is seen that the values of 3 5,y y are not 

known. So we are to provide such values of 3 5,y y along with 

the known values of the other function at 0  as would 

satisfy the boundary conditions as  10   to a 

prescribed accuracy after step by step integrations are 

performed. Since the values of 3 5,y y which are supplied are 

merely rough values, some corrections have to be made in 
these values in order that the boundary conditions to     

are satisfied. These corrections in the values of 3 5,y y are 

taken care of by a self-iterative procedure which can for 
convenience be called ‘‘Corrective procedure’’. This procedure 
has been taken care of by the software which has been used to 
implement R–K method with shooting technique. 
 
As regards the error, local error for the 4th order R–K method 

is  5O h ; the global error would be  4O h . The method is 

computationally more efficient than the other methods. In our 

work, the step size 0.01h  . Therefore, the accuracy of 
computation and the convergence criteria are evident. By 
reducing the step size better result is not expected due to more 
computational steps vis-a` -vis accumulation of error. 
 

RESULTS AND DISCUSSION 
 
The governing equations (13) - (14) subject to the boundary 
conditions (15) are integrated as described in section 3. In order 
to get a clear insight of the physical problem, the velocity and 
temperature have been discussed by assigning numerical values 
to the parameters encountered in the problem. Figures 1 & 2 
shows the effect λ on the non-dimensional velocity and 
temperature profiles. We observe that the velocity decreases 
whereas temperature increases with the increases the values            
of λ. These findings are similar to the results reported by 
Mutlag et al. (2012). Figures 3 & 4 illustrate the effect of 
consistency variation parameter (M) on the velocity and 
temperature respectively. We observed that the velocity 
increases where as temperature decreases with increasing M. 
The variation of the velocity and temperature profiles with the 
Falkner-skan power law parameter (m) is shown in Figures 5 & 
6 respectively.  It is observed that the velocity increases but 
temperature reduces with an increasing m. Figures 7 & 8 
illustrate the effect of suction/injection parameter (fw) on the 
velocity and temperature respectively. It is observed that the 
velocity and temperature decreases with increasing fw. 
Moreover, the velocity and thermal boundary layer thickness 
decreases, these results are similar to the findings by Mutlag            
et al. (2012). Figures 9 & 10 illustrate the effects of the power 
law index parameter (n) on the velocity and temperature 
respectively. It is observed that velocity increases                    
but temperature of the fluid reduces with a rising the values of 
n. Figures 11 & 12 illustrate the effect of convective parameter 
(Bi) on the velocity and temperature respectively. We observed 
that the velocity and temperature increases consequently 
momentum and thermal boundary layer thickness increases 
with increasing Bi. These findings are similar to the results 
reported by Gangadhar (2015). The variation of the 
temperature with the Eckert number (Ec) and Prandtl number 
(Pr) is shown in Figures 13 & 14 respectively.  It is observed 
that the temperature reduces as well as thermal boundary layer 
thickness decreases with an increasing Ec or Pr. Physically, 
Pr=0.67 is Argon-300C, Pr=0.76 is Corbon Diaxide at                     
300C, Pr=2.4 is water at 700C, Pr = 5.1 is water at 300C. Figure 
15 shows the effects of n, M and Bi on skin friction. From 
Figure 15 it is seen that the skin friction decreases with an 
increase n and increases with an increase m or Bi. The effect of 
n, M and Bi on local Nusselt number is shown in fig.16. It is 
found that the local Nusselt number enhances with an increase 
in the parameters M and Bi whereas local Nusselt number 
reduces with increase n.  
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Table 1. Comparison for the values of ''(0)f when fw=M=λ=0, m=n=1 

 

''(0)f  

Present study Mutlag et al. (2012) Postelnicu and Pop (2011) Ishak et al. (2007) 
1.232588 1.232587 1.23259 1.2326 

 
Table 2. Comparison for the values of ''(0)f  for the values of m when fw=M=λ=0, n=1 

 

''(0)f  

m Present study Mutlag et al. (2012) Postelnicu and Pop (2011) 
0 

0.111 
0.333 

1.0 

0.332057 
0.511691 
0.757137 
1.232588 

0.33205 
0.51169 
0.75713 
1.23258 

0.3206 
0.5120 
0.7575 
1.2326 

 

 
 

                Fig.1. Velocity for various values of λ                                          Fig.2. Temperature for various values of λ 
 

 
 

            Fig.3. Velocity for various values of M                                         Fig.4. Temperature for various values of M 
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         Fig.5. Velocity for various values of m                                     Fig.6. Temperature for various values of m 
 

 
 

          Fig.7. Velocity for different values of fw                                                   Fig.8. Temperature for various values of fw 

 

 
 

            Fig.9. Velocity for different values of n                                     Fig.10. Temperature for various values of n 
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                            Fig.11. Velocity for different values of Bi                                 Fig.12. Temperature for various values of Bi 
 

 
 

         Fig.13. Temperature for various values of Ec                                 Fig.14. Temperature for various values of Pr 
 

    
 

        Fig.15. Local Skin friction for various values of n, M and Bi    Fig.16. Local Nusselt number for various values of n, M and Bi 
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The variation of m, λ and fw on skin friction is shown in Figure 
17. It is observed that the skin friction increases with an 
increase m, λ, whereas skin friction decreases with increases fw.  
The effect of m, λ and fw on local Nusselt number is shown in 
Fig.18. It is found that the local Nusselt number enhances with 
an increase in the parameters m whereas local Nusselt number 
reduces with increase λ or fw. Table 1 & 2 that the present 
results perfect agreement to the previously published data. 
 
Conclusion 
 
In the present prater, the steady, two dimensional, Flakner-
Skan stretching and shrinking wedge flow of a power law fluid 
in the presence of viscous dissipation and convective boundary 
condition. The governing equations are approximated to a 
system of non-linear ordinary differential equations by 
similarity transformation. Numerical calculations are carried 
out for various values of the dimensionless parameters of the 
problem. It has been found that 
 

1. The velocity increases whereas temperature reduces with 
an increase in the Flakner-Skan power law parameter. 

2. The influence of viscous dissipation reduces the 
temperature. 

3. The momentum and thermal boundary layer thickness 
increases with a rising the values of convective parameter. 

4. The skin friction decreases with an increase the power law 
index parameter and increases with increases the values of 
convective parameter. 

5. The local Nusselt number enhances with an increase in the 
convective parameter whereas local Nusselt number 
reduces with increase the power law index parameter. 
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