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The analysis of different physical systems and mathematical devices depends on the utilization of 
various types of algebraic quantities involved in the description of geometrical aspects of the 
phenomenon and states which occur.  The most familiar tensors 
stress in a solid and viscous stress in fluid. The purpose of the present manuscript is to discuss a 
nice and lucid characterization of tensor and their basic features. Moreover, the manuscript is 
intended to serve the p
applications in various fields of sciences. We just reviewed and combined the results on 
applications of tensors, which we feel useful in the recent developments. The manuscript be
with tensor primer and consists of few applications in elasticity including illustrations of stress and 
deformation tensors of elastic bodies, electro
brief notions of diffusion tensors used in strai
 

 

 

 
 

INTRODUCTION 
 
Since tensors are essentially a particular category of functions 
depending on vector manifolds, we shall start the manuscript 
with a sophomore fundamental level. A little bit concept of 
linear algebra along with the familiar material about vectors, 
scalars, bases and linear operators etc. will be   recapitulated, 
but eventually, we shall move on to slightly more 
sophisticated topics that are essential for going through the 
proposed ramifications of tensors in Mathematics as well as 
physics. Here are few definitions of tensors: 
 
Definition (1.1): In terms of components: A tensor is a set of
components associated with a specific co-ordinate frame of 
system that transform according to specific rules under a 
change of the co-ordinate frame of system. 

Figure (a): Component representation of a vector
 

Figure (a) shows the components representation of a vector. 
Co-ordinate frame i.e. surface (plane for Cartesian manifold) 
at the head of the vector tuple (��, ��, ��). Similarly, a three 
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ABSTRACT 

The analysis of different physical systems and mathematical devices depends on the utilization of 
various types of algebraic quantities involved in the description of geometrical aspects of the 
phenomenon and states which occur.  The most familiar tensors 
stress in a solid and viscous stress in fluid. The purpose of the present manuscript is to discuss a 
nice and lucid characterization of tensor and their basic features. Moreover, the manuscript is 
intended to serve the purpose of familiarity with recent developments in the tensor theory and its 
applications in various fields of sciences. We just reviewed and combined the results on 
applications of tensors, which we feel useful in the recent developments. The manuscript be
with tensor primer and consists of few applications in elasticity including illustrations of stress and 
deformation tensors of elastic bodies, electro-dynamics with Maxwell’s tensor and finally includes 
brief notions of diffusion tensors used in strain Green’s tensors applied in the study of seismology. 
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tensors are essentially a particular category of functions 
depending on vector manifolds, we shall start the manuscript 
with a sophomore fundamental level. A little bit concept of 
linear algebra along with the familiar material about vectors, 

s and linear operators etc. will be   recapitulated, 
eventually, we shall move on to slightly more 

sophisticated topics that are essential for going through the 
proposed ramifications of tensors in Mathematics as well as 

 

A tensor is a set of 
ordinate frame of 

system that transform according to specific rules under a 

 
Component representation of a vector 

Figure (a) shows the components representation of a vector. 
ordinate frame i.e. surface (plane for Cartesian manifold) 

. Similarly, a three  

 
dimensional 2nd rank tensor consists of 3
arranged in a square matrix. 
transformation rules for the components of a tensor is 
realistically complex and involves selection (often arbitrary) 
of a group of transformation (li
affine etc.) functions and an associated component 
transformation which chooses the tensor quantities that 
preserve desired invariants. The detail evolutions of these 
issues are covered in [5]. 
 
Definition (1.2): In terms of li
linear map on the other tensors. For instance, scalars are 0
order tensors that perform a transformation which scales 
(change the magnitude) of other scalars, vectors and 2
tensors. Vectors can be seen as linear maps
product) which convert other vectors to scalars. 2
tensors are bilinear maps which map one vector to another.
 
Definition (1.3): In terms of Geometric objects:
a geometric object that has certain invariant properties
viewed from different co-ordinate systems. A scalar, for 
example, is a single magnitude quantity that does not changed 
when the co-ordinate system is rotated. Real symmetric 
tensors of rank two can be viewed as a quadric surface such as 
an ellipse in 2D (Figure (b)) or ellipsoid in 3D. Under the 
rotation or translation of the co
and the magnitude of the quadric surface axes and the surface 
shape do not change.      
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rank tensor consists of 32 i.e. nine components 
 A complete treatment of the 

transformation rules for the components of a tensor is 
realistically complex and involves selection (often arbitrary) 
of a group of transformation (linear, projective, conformal, 
affine etc.) functions and an associated component 
transformation which chooses the tensor quantities that 
preserve desired invariants. The detail evolutions of these 

Definition (1.2): In terms of linear map: A tensor is a multi-
on the other tensors. For instance, scalars are 0th-

order tensors that perform a transformation which scales 
(change the magnitude) of other scalars, vectors and 2nd order 
tensors. Vectors can be seen as linear maps (through the inner 
product) which convert other vectors to scalars. 2nd order 
tensors are bilinear maps which map one vector to another. 

Definition (1.3): In terms of Geometric objects: A tensor is 
a geometric object that has certain invariant properties when 

ordinate systems. A scalar, for 
example, is a single magnitude quantity that does not changed 

ordinate system is rotated. Real symmetric 
tensors of rank two can be viewed as a quadric surface such as 

2D (Figure (b)) or ellipsoid in 3D. Under the 
rotation or translation of the co-ordinate system the direction 
and the magnitude of the quadric surface axes and the surface 
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Definition (1.4): In terms of component freeness: We’ll 
now define the modern component free definition a tensor 
which will follow the usual transformation laws. 

A tensor of type (r, s) on a vector manifold V is a scalar 
valued (i.e. C-valued) function T on 

 
 					� × � × … . .× ������������

�������

× �∗ × �∗ × … .× �∗�������������
�������

                   (1.1) 

 
which is linear in each argument, i.e. 
 
	�(�� + ��, ��, … . , ��, ��, ��, … . , ��) =
�(��, … . , ��, ��, … . , ��	) + ��(� , ��, … , ��, … . , ��)            (1.2) 
 
are similar for all arguments. This property is called multi-
linearity. It is quite interesting to note that dual vectors are (1, 
0) tensors and those vectors can be viewed as (0, 1) tensors as 
follows: 

			�(�) ≡ �(�)� ℎ���	� ∈ �, � ∈ �∗.                         (1.3) 
 
Similarly, linear operators can be viewed as (1, 1) tensors as 
 
 				�(�, �) ≡ �(��).                                             (1.4) 
 
Applications of tensor in various fields 
 
In this section, we shall outline some applications of tensor in 
various mathematical & scientific fields.   
 
Applications in Elasticity (Stress tensor of elastic bodies) 

[2]: Surface stress is a specification of the force per unit area 
(force intensity) acting on the surface. The state of stress of an 
elastic medium is specified once we know the force working 
on an arbitrary element of area �� passing through an 
arbitrary point M of the medium which, while defining the 
stress should be considered in equilibrium. Let r be the radius 
vector of M and n be the unit normal to	��. Then the force 
acting on �� equals to	���, where the stress p is a function of 
p(r, n) for the vectors r and n (Figure 2.1). Now, we shall 
show that the function p(r, n) can be deduced from a certain 
second order tensor called stress tensor, which depends on p(r, 
n), r but not on n. To this end, we fabricate an elementary 
tetrahedron about the point M with its edges directed along the 
axes of a rectangular Cartesian co-ordinate system K (Fig. 
2.2). Suppose ���, ���	���	��� represent the area of the faces 
perpendicular to the axes x1, x2 and x3 and let ��� denotes the 
area of the inclined face with unit exterior normal n.  

 
 

Fig. 2.1: The Stress acting on an element of area in an elastic 
medium depends on both the position and the orientation of  

the element 
 
Furthermore, let p-1	���, p-2	���, p-3	��� and p-n	��� be the 
forces imposed by the rest of the medium on the 
areas	���, ���, ���	���	���, respectively. Here the minus 
sign means that the stresses p-1, p-2 and p-3 are acting on the 
outside faces of the tetrahedron, whose exterior normal point 
in the directions opposite to those of the co-ordinate axes. By 
the law of action and reaction, the forces p1	���, 
p1	���	and	��	��� acting on the inside faces of the 
tetrahedron are equal and opposite to those acting on the 
outside faces, and hence 
  
�� = −���, 		�� = −���, 		�� = −���. 
 
Now, let a be the acceleration of the centre of mass of the 
tetrahedron and let f be the body force per unit mass. Then, by 
Newton’s second law, 
 

�	�� = �	�� + ����� + ������ + ������ + ������ 
   = �	�� + ����� − ����� − ����� − �����, 
 

where dm is the mass of the tetrahedron. In the limit, as the 
tetrahedron shrinks to a point M, we obtain that 
 
 ����� = ����� + ����� + ����� = ∑ �����

�
��� , 

 
since the terms containing dm are proportional to the volume 
of the tetrahedron  and hence are of a higher order of 
smallness compared to the terms containing elements of area. 
Since ��� = ��� cos(�, �) = �����, therefore the stress on an 
element of area with unit normal n is given by �� =
∑ ����

�
��� = ����. 

 

 
 

Fig. 2.2: Stresses on the faces on tetrahedron 
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Projecting pn onto the axes of the system K, we have 
  

��� = �����, 
 

where ���(i = 1, 2, 3) is a set of nine normal (i = k) and 
tangential (i ≠ k) stresses acting on three orthogonal elements 
of area at the point M (see Fig. 2.3). Although ��� is 
independent of the orientation n of the area on which the stress 
acts. These nine quantities, which depend only on the point M, 
allow us to determine pn for arbitrary n. Thus the physical 
quantity with components pik called stress tensor uniquely 
specifies the state of stress at every point of the elastic 
medium. 
                                     

 
 
Fig. 2.3: The stress tensor as a set of three stress vectors p1, p2, p3 
acting on three orthogonal elements of area. The projections of 

these vectors onto the co-ordinate axes give the nine components 
of the stress tensor 

 

It only remains to verify the tensor character of pik. Since, the 
definition of pik involves no restriction on the normal n. We 
can assume without loss of generality that the ith axis of the 
new co-ordinate system K’ is directed along n, so that 
 

N=ii
’ (K and K’ have orthonormal bases  i1, i2, i3 and i1

’ i2
’ i3

’ , 
respectively). Then projecting n onto the lth axis of K 
produces 
 

 �� = �. �� = � ′
�. �� = ��′�, 

 

where ��′�  is the cosine of the angle between the ith axis of K’ 
and the lth axis of K, and hence 
 

 �� ≡ ��
′ = �������′��� = ��′������. 

 
Eventually, projecting ��

′ onto the kth axis of K’, we obtain 
 

 ��
′��

′ = ��′�(��. ��
′)���     Or      

              ���
′ = ��′���′����. 

 

Comparing the last equation with the standard equation of 
transformation of the second rank tensor, which is given by 

���
′ = ��′���′���� . Hence we observe that ���  transforms like 

a second order tensor, as it is required. 
 
Deformation tensor of elastic bodies [2]:  Let A and B be the 
two vicinal points of an elastic body. Due to deformation in 
elastic body points A and B changes to �′, �′. Let A and B 
have radius vectors r and r+r, while �′and �′ have radius 

vectors r+u(r) and r+r+u(r+r), as shown in figure (2.4). 
The vectors u(r) and u(r+r) describe the displacement of the 
points A and B as a result of the deformation.  As shown in 
figure (2.4), the relative position of the points is given by r 
before the deformation and ∆�′ = �′�′ = ∆� + �(� + ∆�) −
�(�) after the deformation. The change in magnitude of ∆� 
can be found by calculating the quantity	(∆��)� − (∆�)�. 
Suppose u is a adequately smooth function of position, with 
components	�� = ��(��, ��, ��).  
 

Then	∆��
′ = ∆�� + ��(�� + ∆��, �� + ∆��, �� + ∆��) −

��(��, ��, ��), Using Taylor’s theorem and neglecting terms of 
the second order of smallness 
 

Or 					∆��
′ = ∆�� +

���

���
∆��                                        (2.1) 

 

Again, ∆��
′∆��

′ = (∆�′)�,			∆��∆�� = (∆�)�, and squaring 
Equation (2.1), we get   
   

 (∆�′)� − (∆�)� = 2
���

���
∆��∆�� +

���

���

���

���
∆��∆�� 

              = �
���

���
+

���

���
+

���

���

���

���
� ∆��∆�� = 2���∆��∆��, 

where 

 			��� =
�

�
�

���

���
+

���

���
+

���

���

���

���
�                              (2.2) 

 
Thus, the change in the distance between any two points of the 
elastic body is uniquely expressed by the quantity			���, which 
can be transformed to a new co-ordinate frame system �′ to 
obtain the following: 
 

 �′
�� =

�

�
�

��′
�

��′
�

+
��′

�

��′
�

+
��′

�

��′
�

��′
�

��′
�
�. 

 
 

Fig. 2.4: Deformation of an elastic body 
 

It follows from the transformation law �� = ��′���
′ + ��� 

explaining the transformation from K’ back to the old co-
ordinate frame system K and ��� are the co-ordinates of the 
new origin in the old system, while 
 

 			��′� =
���

��′
�
.                                                        (2.3) 

 

The repeated use of transformation law, Eq. (2.3) and the 
chain rule for the partial derivation, we obtain 
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 �′
�� =

�

�
[

�

���
���′����

���

��′
�

+
�

���
���′����

���

��′
�

+

�

���
(��′���)

���

��′
�

�

���
(��′���)

���

��′
�
] 

 

 =
�

�
(��′�

���

���
��′� + ��′�

���

���
��′� +

��′�

���

���
��′���′�

���

���
��′�) 

 

 = ��′���′�

�

�
(

���

���
+

���

���
+ ���

���

���

���

���
) 

 

 = ��′���′�

�

�
(

���

���
+

���

���
+

���

���

���

���
), 

 
i.e.  �′

�� = ��′���′���� 
 
It follows that ��� is a second rank tensor as evident from the 
transformation law of second rank tensor. In the linear theory 

of elasticity, the terms, such as  
���

���

���

���
 are dropped and due to 

this Eq. (2.2) will have the only term as ��� =
�

�
�

���

���
+

���

���
�. 

 
Applications of tensors in Electro-Dynamic[4](Maxwell 
Stress Tensor): While considering the conservation of total 
momentum (mechanical plus electromagnetic) in 
electrodynamics one comes upon the symmetric second rank 
Maxwell stress tensor, defined in (2, 0) form as 
 

 �(�,�) = � ⊗ � + � ⊗ � −
�

�
(�. � + �. �)�,  

 

where the sign  is used for tensor product and E, B are the 

dual vector versions of the electric and magnetic fields 
respectively. T can be described as T (v, w) which produces the 
rate at which momentum in the v- direction flows in the w-
direction. In terms of components, we can write the above 
expression as follows: 
 

��� = ���� + ����(�. � + �. �)���, 

 
which is the crucial expression often seen in classical electro-
dynamics 
 

The electro-magnetic field tensor: In relativistic electro-
dynamics, the electric and magnetic field vectors are properly 
observed as components of a second rank anti-symmetric tensor 
F, the electro-magnetic field tensor which is defined as 
 

       �[�,�] ≡ ��� = ��

0 ��	
−�� 0
−��

−��

��

−��

�� ��

−�� ��

0
��

−��

0

�� 

 

The Lorentz force law 
���

��
= ���

�
��, where � = �� is the 4-

momentum of a particle, � is its proper velocity and � its 

charge, can be re-written without components as 
��

��
=

��[�,�](�) which just evokes that the proper force on a particle 

is given by the action of the field tensor on the particle’s 
proper velocity. 
 
 

Strain Green’s Tensors & Their Significance to Seismology 

[3]: 
 

Fundamental Aspect: The approaches of Green’s function 
are extensively used in the modeling of seismic wave forms. 
Seismic waveforms of finite frequency carry a great deal of 
information on earthquake sources and earth structure and 
hence the numerical waveform modeling tools provide the 
wave field solutions caused by earthquake sources that are 
either point or distributed moment tensors. They can also 
suggest the Green’s functions, the wave fields from unit 
impulsive point force that are very useful in the seismic study. 
Green’s functions are mainly very helpful in improving the 
computational efficiency when there is a need to calculate the 
waveforms for the same source. In calculating the waveforms 
from the source of earthquake, described by moment tensors, 
it is in fact the spatial gradients of the Green’s tensors that are 
directly used. Strain Green’s Tensors: In seismology, the 
strain Green’s tensor is often used to describe the deformation 
of the earth medium caused by seismic wave-generated 
displacement field and is linearly related to the stress field by 
the constituted law. It is a second order symmetric tensor 
defined in terms of the spatial-gradient elements of the 
displacement vector: 
 

 						�(�, �) =
�

�
[{∇�(�, �)} + {∇�(�, �)}�].           (2.4) 

 
Similar to the definitions, we can form a third order tensor by 
using the spatial gradient elements of the second order Green’s 
tensor: 

			�(�, �; 	��) =
�

�
[{∇�(�, �; 	��)} + {∇�(�, �; 	��)}�].        (2.5) 

 
In Eq. (2.7), �� is the source location of the Green’s tensor, the 
spatial gradient operator acts on the field co-ordinate r, and 
the notation {.}T indicates the transposition of the first two 
indices of a third order tensor, that is {����}� = ����. In 

components form, Eq. (2.5) can be written as 
 
 			����(�, �; 	��) =

	
�

�
[�����(�, �; 	��) + �����(�, �; 	��)].                                (2.6)       

 
This third rank tensor represents the strain associated with the 
Green’s tensors and we call it the strain Green’s tensor (SGT). 
The (SGT) is symmetric with respect to its first pair index and 
therefore it has only eighteen independent elements. In 
seismology, many expressions involve the spatial gradient of 
the Green’s tensor instead of Green’s tensor itself; as a result, 
the (SGT) defined in the equations (2.7) and (2.8) is a often 
more immediately used quantity and making it available can 
frequently improve the efficiency in numerical calculations. 
For instance, the displacement field from a point double-
couple earthquake source can be expressed as [1]: 
 
 				��(�, �; 	��) = ��

����(�, �; 	��)���,                (2.7) 

 
where M is the moment tensor and the superscript S to the 
gradient operator indicates that it acts on the source co-
ordinates. Taking the symmetry of the moment tensor into 
account and applying the reciprocity of the Green’s tensor, 
equation (2.7) can be written as: 
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 						��(�, �; 	��) =
�

�
[��

����(��, �; 	�) +

��
����(��, �; 	�)]���.                                                          (2.8) 

 
Thus, we have 
 
��(�, �; 	��) = ����(��, �; 	�)���	��			�(�, �; 	��) =

�: �(��, �; 	�).                                                                   (2.9) 
 
Equation (2.9) provides an immediate linear relationship 
between the displacement and the moment tensor. Therefore, 
the elements of the (SGT) can be used in earthquake source-
parameter inversions to obtain partial derivatives of the 
seismic data with respect to the moment tensor elements. 
Because of the (SGT) is immediately linked with the 
earthquake generated displacement field, the capability of 
efficiently providing the (SGT) can greatly improve the 
efficiency in the modeling of seismic data. 
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