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INTRODUCTION 
 

For any polynomial P(z) of degree n, the polar derivative of P(z) 

)()()()( zPzznPzPD  
which is a polynomial of degree at most n

in the sense that )(
)(

lim zP
zPD







. In the context of the famous Enestrom

all the zeros of the polynomial 



n

j
j zazP

0

)(

find bounds for the zeros of )(zPD
under certain conditions on its coefficients. In this connection  recently  

proved the following results: 

 
Theorem A: Let 




n

j

j
j zazP

0

)( be a polynomial of degree n and 

respect to  a real number   such that 

1210 23...)2()1(   n aaananna

If 0 , then all the zeros of the polar derivative 

 
 
*Corresponding author: Gulzar, M. H.  
Department of Mathematics, University of Kashmir, Srinagar, India.
 

ISSN: 0975-833X 

Vol. 

Article History: 
 

Received 18th November, 2015 
Received in revised form  
14th December, 2015 
Accepted 25th January, 2016 
Published online 27th February, 2016 
 

Citation: Gulzar, M. H. and Manzoor, A. W. 2016
(02), 26669-26674. 

Key words: 
 

Bound, coefficients, Polynomial,  
Zeros. 
 

Mathematics Subject Classification:    
 

30C10, 30C15. 

 

 
 

 

 

                                                  

 
 

RESEARCH ARTICLE 
 

ON THE ZEROS OF THE POLAR DERIVATIVE OF A POLYNOMIAL
 

Gulzar, M. H. and Manzoor, A. W. 
 

Department of Mathematics, University of Kashmir, Srinagar, India
 
    

ABSTRACT 

In this paper we find bounds for the zeros of the polar derivative of a polynomial under certain 
conditions on the coefficients. Our results generalize many known results in this direction.

is an open access article distributed under the Creative Commons Attribution License, which 
use, distribution, and reproduction in any medium, provided the original work is properly cited. 

, the polar derivative of P(z) with respect to a positive  real number
which is a polynomial of degree at most n-1. The polar derivative generalizes the ordinary derivative 

. In the context of the famous Enestrom-Kakeya Theorem (

j with 0...... 011   aaaa nn lie in 1z

under certain conditions on its coefficients. In this connection  recently  

be a polynomial of degree n and )()()()( zPzznPzPD  
be a polar derivative of P(z) with 

12   nn aa . 

, then all the zeros of the polar derivative )(0 zPD lie in ][
1

001

1

nanaa
a

z n

n

 



. 

of Mathematics, University of Kashmir, Srinagar, India. 

 Available online at http://www.journalcra.com 

International Journal of Current Research 
Vol. 8, Issue, 02, pp.26669-26674 February, 2016 

 

 INTERNATIONAL 
    

2016. “On the Zeros of the Polar Derivative of a Polynomial”, International Journal of Current 

 z 

ON THE ZEROS OF THE POLAR DERIVATIVE OF A POLYNOMIAL 

India 

 
 

 

In this paper we find bounds for the zeros of the polar derivative of a polynomial under certain 
conditions on the coefficients. Our results generalize many known results in this direction. 

ribution License, which permits unrestricted 

 

with respect to a positive  real number  is defined by 
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Later Reddy et al. (2015) proved the following generalizations of Theorems A and B: 
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In this paper we find lower bounds for the zeros of )(zPD under the same conditions. In fact, we prove the following results: 
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Combining Theorem C and Theorem 1, we get the following result: 
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where M is as given in Theorem 1. 
 

Taking niai ,......,2,1,0,0, 
 
in Theorem 2, we get the following result: 
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Proofs of Theorems 
 
Proof of Theorem 1: We have 
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