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INTRODUCTION

For any polynomial P(z) of degree n, the polar derivative of P(z) with respect to a positive real number « is defined by
D, P(z) = nP(z) + (a — z)P'(z) which is a polynomial of degree at most n-1. The polar derivative generalizes the ordinary derivative

in the sense that jjy . D, P(2) = P'(z)- In the context of the famous Enestrom-Kakeya Theorem (Marden, 1966) which states that
a

all the zeros of the polynomial p ) _ Z":a Jiwith @, 2a, | 2....2a 2a,>0lie in |Z| <1, attempts have been made to
J
j=0

find bounds for the zeros of p_P(z)under certain conditions on its coefficients. In this connection recently Ramulu er al, (2015)
proved the following results:

Theorem A: Let p(,y_ Zn:ajzf be a polynomial of degree n and D_P(z)=nP(z)+(a —z)P'(z) be a polar derivative of P(z) with
j=0

respect to a real number & such that

na, <(n-1a, <(n-2a, <..<3a, ,<2a,,<a,-

If a =0, then all the zeros of the polar derivative D,P(z) lie in 2| < 1 la,., —na, +|na,[]-

n—1

n—1 ‘
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Theorem B: Let p) _ Zn“ajzf be a polynomial of degree n and D_P(z) = nP(z)+(a —z)P'(z) be a polar derivative of P(z) with
j=0

respect to a real number ¢ such that

nay,2(n—a, 2(n-2)a, 2..23a, ,22a, ,2a

n-1"

If a =0, then all the zeros of the polar derivative p P(z) lie in ‘z‘ < [‘”ao‘ +na,—a, ]

n—-1

Later Reddy et al. (2015) proved the following generalizations of Theorems A and B:

Theorem C: Let P(z) = Z": a2’ be a polynomial of degree n and D _P(z)=nP(z)+(a—z)P'(z) be a polar derivative of P(z) with
j=0
respect to a real number ¢ such that

(i+2aa,,+{n-(i+1)}aa,, 2(i+aa,, +(n—-i)a,,i=0.L2,...,1n-2.
Then all the zeros of the polar derivative D_P(z)lie in
1
|z| <+————[naa, +a, ,—(ca, +na,)+ |01a1 + na0|].
lnoa, +a,,

Theorem D: Let P(z) = Z ajzj be a polynomial of degree n and D, P(z) =nP(z)+ (a —z)P'(z) be a polar derivative of
7=0

P(z) with respect to a real number ¢ such that

(i+2aa;, +{n-(i+D}aa,, <(i+Daa,, +(n—i)a,;,i=012,...1n-2.

Then all the zeros of the polar derivative D, P(z) lie in

oS sl + ]+ e + ) e, =)

In this paper we find lower bounds for the zeros of D, P(z) under the same conditions. In fact, we prove the following results:

Theorem 1: Let P(z) = Z ajzj be a polynomial of degree n and D, P(z) =nP(z)+ (¢ —z)P'(z) be a polar derivative of
7=0
P(z) with respect to a real number ¢ such that
(i+2aa,;,, +{n-(i+D}aa,, 2(+Daa,, +(n—ia,,i=012,...1n-2.
|05a1 + nao|
Then all the zeros of the polar derivative D, P(z) lie in |Z| > — where
= |naan + an_1| +(naa, +a, )—(aa, +na,)

Combining Theorem C and Theorem 1, we get the following result:

Theorem 2: Let P(z) = Z ajzj be a polynomial of degree n and D, P(z) =nP(z)+ (¢ —z)P'(z) be a polar derivative of
=0

P(z) with respect to a real number ¢ such that

(i+2aa,;,, +{n-(i+D}aa,, 2(+Daa,, +(n—i)a,;,i=0,12,...1n-2.

Then all the zeros of the polar derivative D, P(z) lie in

where M is as given in Theorem 1.

|0wt1 + na0|

I,

———[naa, +a, | —(oa, + na,) + |05a1 +na,
|naa +a, |

Taking ,a, >0,i =0,1,2,......,n in Theorem 2, we get the following result:
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Corollary 1: Let P(z) = Z az "bea polynomial of degree n with positive coefficients and
j=0

D,P(z) =nP(z)+(a—z)P'(z) be a polar derivative of P(z) with respect to a real number ¢ such that
(i+2)aa,,+{n-(+D}a,, 2(i+)aa,, +(n—-i)a,,i=012,...,1n-2.

aa, +na,

i+l

Then all the zeros of the polar derivative D, P(z) lie in < |Z| <1.

2(naa, +a, )—(aa, +na,)

Theorem 3: Let P(z) = Z ajzj be a polynomial of degree n and D, P(z) =nP(z)+ (¢ —z)P'(z) be a polar derivative of
=0
P(z) with respect to a real number ¢ such that
(i+2aa,;,, +{n-(i+D}aa,, <(i+Daa,, +(n—i)a,,i=012,...1n-2.
loa, + na,

Then all the zeros of the polar derivative D, P(z) lie in |Z| > — where

i+l

M'= |naan + an_1|—naan —a,  +oa, +na,.

Combining Theorem D and Theorem 3, we get the following result:

Theorem 4: Let P(z) = Z ajzj be a polynomial of degree n and D, P(z) =nP(z)+ (a —z)P'(z) be a polar derivative of
=0

P(z) with respect to a real number ¢ such that

(i+2aa;,, +{n-(i+D}aa,, <(i+Daa,, +(n—i)a,,i=012,...1n-2.

Then all the zeros of the polar derivative D, P(z) lie in

i+l

|05a1 + na0|
M’

where M 'is as given in Theorem 3

<lz| < [lea, + nay|+ (ca, + na,)—nea, -a, 1,

|naan + an_1|

Taking a,a, >0,i =0,1,2,......,n in Theorem 3, we get the following result:

Corollary 2: Let P(z) = z a ij be a polynomial of degree n with positive coefficients and
=0

D_P(z)=nP(z)+ (a—z)P'(z) be a polar derivative of P(z) with respect to a real number ¢ such that
0<(@+2)aa,,+{n-(+}a,, <(i+Daa,, +(n—ia,,i=0.2,...,1n-2.

Then all the zeros of the polar derivative D, P(z) lie in
1
1< |z| <—[2(aa, +na,)-noa,—a, ].
naa, +a,

Proofs of Theorems
Proof of Theorem 1: We have

P(z)=a,z" +a, z"" +...+a,z’ +a,z+a,

D, P(z)=nP(z)+(a—z)P'(z)
=(naa, +a, )z"" +{(n-Daa,  +2a, ,}z"> +{(n-2)aa, , +3a, ;}z""
+ e +{3aa, +(n—2)a,}z’ +{2aa, + (n—1)a,}z + (aa, +na,).

Now , consider the polynomial

F(z)=(1~-2)D,P(z)
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=—(naa, +a, )z" +{naa, + 1+ a—-na)a, ,—2a, ,}z"" +{(n-Daa,_
+(Q2+2a—-na)a, ,-3a, ;32" +.....+ Baa, + (n-2-2a)a, —(n—-1a,}z’
+{2aa, +(n—-1-a)a, —na,}z +(aa, + na,)

=(aa, +na,)+G(z),

where

G(z) =—(naa, +a, )z" +{naa, + l+a—na)a, , —2a, ,}z"" +{(n-aa,_,
+(2+2a-na)a, ,-3a, 32" +....+ Baa, +(n—-2-2a)a, - (n—1)a,}z’
+{2aa, + (n—1-a)a, —na,}z

For |Z| <1, we have by using the hypothesis,

G(2)| <|naa, +a, | +|noa, + 1+ a-na)a,  —2a,,|+|(n-Daa, , +(2+2a

-na)a, , —3a, , | et PBaay, +(n-2-2a)a, —(n— 1)a1|
+ |20¢a2 +(n-1-a)a, - nao|

= |naan + an_1| +noa,+(1+a—-na)a, , -2a, ,

+(mn-Doa, , +2+2a-na)a, , —3a, ;+......

+3ca, +(n—-2-2a)a, —(n—1)a, + 2aa, + (n—1-a)a, —na,

= |naan + a,H| +(naa,+a, ,)—(aa, +na,)

=M

Since G(z) is analytic for |Z| <1 and G(0)=0, it follows by Schwarz Lemma that |G(Z)| <M |Z| for |Z| <I1.
Hence, for |Z| <1,

|F(2)|=|(ca, +na,) +G(2)|
> |0(a1 + na0| —|G(z)|

> |05a1 + na0| —M|Z|

>0
if
|z| - |05a1 + na0|
—M .
. o |05a1 + na0|
This shows that all the zeros of F(z) lie in |Z| > T .

|05a1 +na,

Since the zeros of D P(z) are also the zeros of F(z), it follows that all the zeros of D, P(z) lie in |Z| > and the

proof of Theorem 1 is complete.

Proof of Theorem 3: We have

P(z)=a,z" +a, z"" +...+a,z" +a,z+a,

D, P(z)=nP(z)+(a—-z)P'(z)

=(naa, +a, )z""' +{(n-Daa, , +2a, ,}z" " +{(n-2)aa, , +3a, ;}z">
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+ . +{3aa, +(n—2)a,}z* +{2aa, + (n—a,}z + (aa, + na,).

Now, consider the polynomial

F(z)=(1-2)D, P(z)

=—(naa, +a, )z" +{naa, + 1+ a—-na)a, ,—2a, ,}z"" +{(n-aa,_
+(Q2+2a—-na)a, ,-3a, ;2" +.....+ Baa, + (n-2-2a)a, —(n—1a,}z’
+{2aa, +(n—-1-a)a, —na,}z +(aa, + na,)

=(aa, +na,)+G(z),

where

G(z) =—(naa, +a, )z" +{naa, + 1+ a—na)a, , —2a, ,}z"" +{(n-aa,_,
+(Q2+2a-na)a, ,-3a, ;2" +.....+ Baa, + (n-2-2a)a, —(n—-1a,}z’

+{2aa, +(n—-1-a)a, —na,}z
For |Z| <1, we have by using the hypothesis,

G(2)| <|naa, +a, | +|noa, + 1+ a—na)a,  —2a,,|+|(n-Daa, , +(2+2a

-naa, , —3a, , | et PBaay, +(n-2-2a)a, —(n— 1)a1|

+ |20¢a2 +(n-1-a)a, - nao|

= |n oa, + aH| +2a, ,—naa,-(1+a-na)a, , +3a, ;, —(n-1aa,

-2+2a-naja, , +.....4(n-1a, =30a, —(n-2-2a)a,

+na, —2aa, —(n—1-a)a,

= |naan + an_1| —-naa, —a, | +aa, +na,

=M.

Since G(z) is analytic for |Z| <1 and G(0)=0, it follows by Schwarz Lemma that |G(Z)| <M |Z| for |Z| <I.

Hence, for |Z| <1,

|F(2)|=|(ca, +na,) + G(2)|
> |0(a1 + na0| —|G(z)|

> |05a1 + na0| —M'|z|

>0
if
2 < —|"“’1A; |
. o |()ta1 + na0|
This shows that all the zeros of F(z) lie in |Z| > T .

|05al +na,

Since the zeros of D, P(z) are also the zeros of F(z), it follows that all the zeros of D, P(z) lie in |Z| > and the

proof of Theorem 3 is complete.
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