

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 8, Issue, 02, pp.26548-26550, February, 2016 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

INFLUENCE OF FERTILIZER MANAGEMENT TO TURMERIC (*CURCUMA LONGA* L.) CV. SALEM UNDER KONKAN CONDITION

^{*,1}Dr. Shinde, V. V., ¹Gavade, R. T., ¹Dubale, J. J. and ²Chavan, S. S.

¹Agriculture Research Station, Awashi, Tal. Khed Dist Ratnagiri (MH) ²Subject Matter Specialist (Entomology), Krishi Vidnyan Kendra, Lanja Dist. Ratanagiri (415 722)

ARTICLE INFO ABSTRACT A field experiment was carried out at Agriculture Research Station, Awashi, Tal.Khed, Dist.Ratnagiri Article History: under Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli during the year 2012 to 2015 in in Received 24th November, 2015 randomized block design with five treatments with four replications comprising different levels of N Received in revised form fertilizer (150,200,250,300,350 kg ha-1) in two splits i.e 45 days and 90 days of planting, 18th December, 2015 respectively. Application of 200 kg N ha⁻¹ showed marked improvement in growth and yield Accepted 25th January, 2016 Published online 27th February, 2016 attributes without affecting the quality parameter i.e curcumin content of turmeric. Thus, increasing dose of N upto 200 kg N ha $1(T_2)$ resulted significantly better with respect to improvement in plant height (110.93 cm), number of leaves plant⁻¹, leaf area(cm), fresh rhizome yield (40.95 plot ha⁻¹), Key words: fresh rhizome yield (22.93 t ha⁻¹), fresh mother rhizome yield (7.08 t ha⁻¹) and finger yield Chemical fertilizer, $(15.80 \text{ t ha}^{-1})$ over control whereas it was at par with number of tiller per plant (2.81), number of Turmeric growth and yield, leaves plant⁻¹(18.93) and leaf area(4962.4 cm). The net returns at optimum dose of N (200 kg N ha⁻¹) Leaf area Curcumin content. were Rs.91533200 ha⁻¹ with benefit cost ratio 2.52. However, there were no variable changes found in soil P^H , EC (dSm⁻¹) and organic carbon content (%).It can be concluded from the experiment that optimum dose of N fertilizer is necessary for sustaining soil fertility and productivity of turmeric.

Copyright © 2016 Shinde et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Shinde, V. V., Gavade, R. T., Dubale J. J. and Chavan, S. S. 2016. "Influence of fertilizer management to turmeric (*Curcuma longa* L.) cv. Salem under Konkan condition", *International Journal of Current Research*, 8, (01), 26548-26550.

INTRODUCTION

India is the largest producer, consumer and exporter of turmeric in the world. Indian turmeric is considered to be the best in the world market because of its high curcumin content. India accounts for about 80 per cent of world turmeric production and 60 per cent of world exports (Angles et al., 2011). Other major producers are Pakistan, China, Haiti, Jamaica, Peru, Taiwan and Thailand. Asian countries consume much of their turmeric production. The important turmeric growing States in India are Andhra Pradesh, Tamil Nadu, Orissa, Maharashtra, Assam, Kerala, Karnataka and West Bengal, in which Andhra Pradesh occupies 40 per cent of total turmeric area followed by Orissa and Tamil Nadu occupying 17 per cent and 13 per cent of total turmeric area respectively. In terms of production Andhra Pradesh accounts 60 per cent of total turmeric production in India followed by Tamil Nadu (13 per cent) and Orissa (12 per cent). The total area of turmeric in India is 233 thousands ha with production of 1190 thousand

*Corresponding author: Dr. Shinde, V. V. Agriculture Research Station, Awashi, Tal. Khed Dist Ratnagiri (MH) MT and productivity of 5.1 MT/Ha.). However the area under this crop in konkan region is increasing day by day. Response of turmeric to increase level of fertilizer has been significant (Parthasarathy *et al.*, 2010). Hence, to know the response of fertilizer to turmeric crop in konkan region, the present investigation entitled "Studies on Fertilizer response to turmeric (*Curcuma longa* L.) under Konkan condition" was conducted at Agriculture Research Station, Awashi, Khed, Ratnagiri during the year 2012 to 2015.

MATERIALS AND METHODS

The trial was initiated at Agriculture Research Station, Awashi by ploughing the field with tractor mounted reversible plough in year 2012. The experimental site was located at $17^{0}72$ 'North latitude, $73^{0}39$ ' East longitudes and at 240 meters altitude above the mean sea level. The field was levelled by preparing the ridges and furrows with a spacing of 6.0 X 3.0 m. The good quality seed materials treated with fungicide carbendanzim (1%) were planted in the month of April. The FYM was applied at the time of field preparation. Half quantity of N, full quantity of P and K was applied at 45 days after planting while

remaining quantity of half N was applied after 90 days of planting. Experiment was laid out in randomized block design with five treatments with four replications. The treatments were $T_1 = 25 \text{ T FYM} + 150 \text{Kg N} + 50 \text{ Kg P}_2\text{O}_5 + 150 \text{Kg K}_2\text{O}$ (Control), $T_2 = 25 \text{ T FYM} + 200 \text{Kg N} + 50 \text{ Kg P}_2\text{O}_5 + 150 \text{Kg}$ $K_2O_7T3 = 25 T FYM + 250Kg N + 50 Kg P_2O_5 + 150Kg K_2O_7$ $T4 = 25 T FYM + 300 Kg N + 50 Kg P_2O_5 + 150 Kg K_2O, T_5 =$ 25 T FYM + 350Kg N + 50 Kg P_2O_5 + 150Kg K_2O . The number of pants selected per treatment per replication were five for the observations under study. The harvesting was done in the month of February. The observations recorded were plant height (cm),number of leaves per plant, leaf area (cm²), number of tillers plant⁻¹, Rhizome yield (kg) and curcumin content (%). The initial and final soil status were studied by analysing the soil samples. The initial soil properties of the soil were P^H5.85, EC 0.84 dSm⁻¹ available nitrogen 319 ha⁻¹, available phosphorous 11.88 kg ha⁻¹, available potassium 157.77 kg ha⁻¹ and organic carbon content 2.12 %.The recorded data were analyzed statistically as specified in the experiment.

RESULTS AND DISCUSSION

The experimental findings obtained from the present studies pertaining to fertilizer response to turmeric cv. Salem under Konkan condition have been discussed here.

Plant height (cm) : Data presented in Table 1 revealed that increasing levels of fertilizer N significantly increased plant height. Maximum plant height of 115.25 cm was recorded with T_5 which was significantly superior over rest of the fertilizer N levels. The treatment T_5 (control) has recorded significantly minimum (96.49 cm) plant height. Whereas, treatment T_2 , T_3 and T_4 were at par with each other. Govind (1990) also explained that application of N nutrients significantly increase vegetative growth parameters of turmeric than any other nutrients.

Number of leaves per plant: It was noticed that maximum number of leaves per plant(19.07) was observed in treatment T_1 i.e control and it was at par with T2(18.93) while it was found statistically lowest (15.44) in treatment T_5 .Further, it is revealed that increasing levels of fertilizer N significantly decreased the number of leaves per plant.

Leaf area (cm²): It was observed that treatment T_5 recorded maximum leaf area(5362.6 cm) which was significantly higher over rest of the treatments. Treatment T_1 recorded significantly minimum leaf area (4904.63 cm) and it was at par with T_2 .It was found that increasing levels of N significantly increased the leaf area. Behura (2001) reported that chemical fertilizer of N & K applied in a certain ratio showed higher efficacy on turmeric yield. N applied alone increased turmeric yield significantly. Satyareddi and angadi (2014) also reported higher dose of fertilizer (270:135:180 kg N:P₂O₅:K₂Oha⁻¹) significantly increased plant height (75.1 cm), leaf area (45.9 dm²), number of tiller per plant (6) over other graded levels of fertilizer evaluated.

Number of tillers per plant: From Table 1, it is shown that number of tillers per plant was significantly decreased from optimum levels of fertilizer N. Treatment T_1 (control) significantly recorded maximum numbers of tillers per plant (2.36) but was at par with T_2 and T_3 . Whereas, minimum numbers of tillers per plant (1.04) was recorded in treatment T_5 followed by T_4 . The results are in accordance with the observations of Jirali (2001) who has reported negative correlation with the tiller number and yielding ability of genotypes

Fresh rhizome yield (kg plot⁻¹): Among the treatments, the treatment T_2 recorded significantly maximum fresh rhizome yield (40.95 kg plot ⁻¹) followed by T_3 (35.55 kg plot ⁻¹). Lowest fresh rhizome yield (29.46 kg plot ⁻¹) was noticed in the treatment T_5 which was at par with treatments T_1 and T_4 .

Fresh rhizome yield (t ha⁻¹): The treatment T_2 recorded significantly maximum fresh rhizome yield (22.93 t ha ⁻¹) over rest of the treatments followed by T_3 . Lowest fresh rhizome yield (16.37 t ha⁻¹) was noticed in the treatment T_5 which was at par with treatments T_1 and T_4 . The results are in close conformity with findings of Satyareddi and Angadi (2014) who showed higher fresh rhizomes yield per plot(34.45 kg plot ⁻¹) and yield per ha (23.41 t ha ⁻¹) with application of 270:135:180 kg N:P₂O₅:K₂O per ha. over other fertilizer levels.

Mother rhizome (t ha⁻¹): It was observed that treatment T_2 registered maximum mother rhizome yield (7.08 t ha⁻¹) which was statistically significant over rest of the treatments. Lowest mother rhizome yield (4.77 t ha⁻¹) was recorded in the treatment T_5 . It was found that treatment T_1 and T_4 were at par with each other.

Finger yield (t ha⁻¹): The treatment T_2 has recorded significantly maximum finger yield (15.80 t ha⁻¹) followed by T_3 (14.21 t ha⁻¹).Whereas, treatment T_5 recorded minimum finger yield (11.59 t ha⁻¹) which was at par with T_1 and T_4 . Similar results were obtained by Satyareddi and angadi (2014) who reported significantly higher weight of mother rhizomes (74.6 g plant⁻¹), primary rhizomes (178.0 g plant⁻¹), secondary rhizomes (59.4 g plant⁻¹) and tertiary rhizomes (16.4 g plant⁻¹) in cv. Cudappah. Similarly, Hossain and Ishimine (2005) revealed that turmeric yield increased with application of NPK.

Curcumin content (%): Different levels of N fertilizer did not increase the curcumin content (%) under the study. However, numerically the maximum curcumin content (3.26%) was observed in T_3 and T_4 followed by $T_2(3.25\%)$. Akamine *et al.*, 2007 also reported that application of NPK resulted in highest yield but did not increase curcumin content.

The details of cost of production ha-¹ are presented in Table 2. Maximum cost of cultivation Rs.599069 ha-¹was estimated in T_2 and lowest in T_5 which accounted for Rs.536289 ha⁻¹.

The treatment wise cost of cultivation and their returns revealed that maximum net returns of Rs.91533 was observed in T_2 followed by T_3 , T_4 and T_1 with returns per rupee invested of 2.52, 2.27, 2.09 and 2.09, respectively. However, the lowest net return of Rs.540711 was observed in T5 with returns per rupee invested of 2.00 %.

C.D. at 5%

Treatments	Plant height (cm)	Number of leaves/ plant	Leaf area (cm ²)	No. of tillers/ plant	Fresh rhizome yield (kg/plot)	Fresh rhizome yield (t/ha)	Fresh mother rhizome and finger yield (t/ha)		Curcumin content (%)
	(cm)	icaves/ plan	(cm)	tillers/ plant	yield (kg/piot)	yield (t/lia)	Rhizome	Finger	content (70)
T ₁	96.49	19.07	4904.63	2.36	31.01	17.25	5.11	12.14	3.24
T ₂	110.93	18.93	4962.4	2.81	40.95	22.93	7.08	15.80	3.25
T ₃	110.94	18.05	5022.13	2.43	35.55	19.77	5.55	14.21	3.26
T_4	112.10	16.99	5188.73	1.82	30.33	17.35	5.20	12.16	3.26
T ₅	115.25	15.44	5362.6	1.04	29.46	16.37	4.77	11.59	3.23
S.E <u>+</u>	0.60	0.32	27.88	0.16	1.55	0.83	0.05	0.59	3.24

Table 1. Effect of fertilizers on vegetative growth and yield of Turmeric (pooled-Awashi)

*Figures in paranthesis are arc sin transformed values

1.86

Table 2. Economics of Production in turmeric

4.489

2.238

S. No.	Treat.	Yield per ha (t)		Gross income (Rs. ha ⁻¹)	Cost of production (Rs. ha ⁻¹)	Net income (Rs.ha ⁻¹)	B:C ratio
		Rhizome	Finger	- Gross meome (Ks. na)	Cost of production (Rs. na)	Net income (Ks.na)	B.C Tatio
1.	T1	5.11	12.14	1137200	543007.00	594193	2.09
2.	T_2	7.08	15.80	1514400	599069.00	915331	2.52
3.	T_3	5.55	14.21	1296600	570698.00	725902	2.27
4.	T_4	5.20	12.16	1145600	546960.00	598640	2.09
5.	T ₅	4.77	11.59	1077000	536289.00	540711	2.00

Sale cost @Rs.60/-kg for Finger and Rs.80/-Kg for mother rhizome

0.96

78.92

0.47

Table 3. Final soil analysis report

Treatments	P ^H	EC (dSm ⁻¹)	N (kg ha ⁻¹)	P ₂ O ₅ (kg 200 kg N ha ⁻¹)	K ₂ O (kg ha ⁻¹)	O C (%)
freatments	Awashi	Awashi	Awashi	Awashi	Awashi	Awashi
T ₁	5.87	0.84	344.56	11.99	170.14	2.23
T_2	5.89	0.84	349.38	12.20	176.24	2.25
T ₃	5.88	0.83	353.21.	12.15	174.12	2.24
T ₄	5.87	0.83	356.92	12.11	173.15	2.23
T ₅	5.87	0.83	358.49	12.04	171.24	2.24
C.D. at 5%	NS	NS	2.614	0.116	1.010	NS

From soil analysis report, it is revealed that treatment T_2 recorded significantly highest soil $P_2O_5(12.20 \text{ kg/ha})$ and $K_2O(176.24\text{kg/ha})$, whereas treatment T5 recorded highest soil N (358.49 kg/ha) as compared to rest of the treatments. However, there were no variable changes found in soil P^H , EC (dSm⁻¹) and organic carbon content (%).

Conclusion

It is concluded that an additional supply of nitrogen resulted into significant higher yield in vegetative parameters but has negative effect on tuber formation. This might be due to the additional nitrogen above optimum level caused degradation of carbohydrates. Further, number of tillers recorded by the treatment T₂ are significantly more than rest of the treatments which exhibit directly in maximization of rhizome yield. Based on the yield and economics of turmeric cultivation, it is concluded that the treatment T₂ i.e 25 t FYM+200 Kg N+50 Kg P₂O₅+150 Kg K₂O per ha. recorded highest turmeric yield 22.88 t/ha with highest B:C ratio 2.52 with maximum net returns of Rs.915331.

REFERENCES

Akamine, H., Hossain, A. M., Ishimine. Y., Yogi, K., Hokama, K., Iraha, Y. and Aniya, Y. 2007. Effects of application of N, P and K alone or in combination on growth, yield and curcumin content of turmeric (Curcuma longa L.). Plant Prod. Sci., 10: 151-154.

0.167

1.831

NS

- Angles, S., Sundar, A. and Chinnadurai, M. 2011. Impact of globalization on production and export of turmeric in India - An economic analysis. *Agric.Econ.Res. Rev.* 24:301 -308.
- Behura, S. 2001. Effect of application of chemical fertilizers on growth, yield and curcumin content of turmeric, *Indian J. Agron.* 46 : 747-751.
- Govind, S., Gupta P.N. and Ram Chandra. 1990. Response of .N and P levels on growth and yield of turmeric in acid soils of Meghalaya. *Ind. J. Hortic.* 47: 79-84.
- Hossain, M. A. and Ishimine, Y. 2005. Effect of farmyard manure on growth and yield of turmeric (*Cucuma longa* L.) cultivated in dark red soil, Red soil and gray soil in Okinawa, Japan *Plant Prod. Sci.*, 8 : 482-486.
- Jirali., D.I. 2001. Physiological inversigation in turmeric (*Curcuma longa* L.) *Ph.D. Thesis*, Univ.Agric.Sci., Dharvad, Karnataka (India).
- Pathasarathy, V.A., Dinesh, R., Srinivasan, V. and Hamza, S. 2010. Integrated nutrient management in major spices.*Indian J.Fert.*,6:110-128.
- Satyaredddi S. A. and Angadi S.S. 2014. Response of turmeric curcuma longa L. varieties to irrigation methods and graded level of fertiliser. *Res. Environ. Life Sci.*, 7 (4) 237-242.
