
 

       
 

 
                                                 
 

 

THE DESIGN OF A LINEAR QUADRATIC OPTIMAL REGULATOR FOR TRANSIENT HEAT FLOW IN 
CONTINUOUS CASTING OF STEEL

1Obinabo, E. C., 2

1Department of Electrical and Electronic Engineering, Ambrose Alli University, P.M.B. 14, Ekpoma, 

2Department of Mechanical Engineering,

 3Department of Marine Engineering, Federal University of Petroleum Resources, P.M.B. 1221

ARTICLE INFO                                          ABSTRACT
 

 

A generalized approach to the modelling of transient heat flow in steel ingots during cooling in the 
continuous casting mould is presented. The mathematical development starting with the relevant 
differential equations and their modelling using the Hills’ 
functions which characterized the transient heat flow in the steel ingots. An optimal feedback control 

law u

as a function of 


reported in the literature. 
 
 
 
 
 
 
 
 
 
 

 
Copyright © 2016 Obinabo et al. This is an open access article distributed under the Creative Commons Att
distribution, and reproduction in any medium, provided the original work is properly cited.
 
 
 
 

 

 

INTRODUCTION 
 
Several models of heat flow in hot working processes have 
been reported in the existing literature. Most of these studies 
have been confined to laboratory models and relatively simple 
components, notably finite lengths of steel slabs, have been 
used to produce solutions to the heat conduction equations. 
These equations were often defined in one (
and more rarely two (Yu and Sang, 2007) dimensions in space. 
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Notation: 

C  Specific heat capacity (J/kg0C), h  Heat transfer coefficient (W/m

t   Dimension of workpiece (m), V  Speed of workpiece (m/s), 

  Temperature (OC),   Density (kg/m3),  Time (s), 
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ABSTRACT 

A generalized approach to the modelling of transient heat flow in steel ingots during cooling in the 
continuous casting mould is presented. The mathematical development starting with the relevant 
differential equations and their modelling using the Hills’ integral profile method gave polynomial 
functions which characterized the transient heat flow in the steel ingots. An optimal feedback control 

   was obtained for the system based on the quadratic performance index, and was expresse

as a function of x  given by  u  xf , which assures asymptotic stability 

 . A good functional correspondence was shown to exist between the model and 

reported in the literature.  
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Several models of heat flow in hot working processes have 
been reported in the existing literature. Most of these studies 
have been confined to laboratory models and relatively simple 
components, notably finite lengths of steel slabs, have been 

duce solutions to the heat conduction equations. 
These equations were often defined in one (Wartmann, 1973) 

) dimensions in space.  
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In billet mills, accurate mathematical models of interstand 
cooling of rolled steel are required for the analysis and control 
of the shape distortions observed during air
product. In relation to the thermal distortions observed during 
hot rolling of steel in billet mills (
dimensional models cannot be used with confidence to 
describe the origins and orientations of these defects. 
Increasingly, the models reported in the existing literature are 
aimed at predicting the thermal conditions of the rolls in both 
hot and cold strip mills while a very scant treatment is, so far, 
given to the determination of the actual temperature 
distributions in the workpiece itself.
 

 Available online at http://www.journalcra.com 

International Journal of Current Research 
Vol. 8, Issue, 02, pp.26724-26733, February, 2016 

 

 INTERNATIONAL 
    

Izelu, C. O., Nwaoha, T. C. and Ashiedu, F. I. 2016.  “The design of a linear quadratic optimal regulator for transient heat 
International Journal of Current Research, 8, (02), 26724-26733. 

Heat transfer coefficient (W/m20C), k  Thermal Conductivity (W/mOC) , qQ,  Heat flux (W/m

Speed of workpiece (m/s), zyx ,, Spatial extent in space (m),   Thermal diffusivity (m

Time (s),  Dimensionless time,  Small increment. 
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A generalized approach to the modelling of transient heat flow in steel ingots during cooling in the 
continuous casting mould is presented. The mathematical development starting with the relevant 

integral profile method gave polynomial 
functions which characterized the transient heat flow in the steel ingots. An optimal feedback control 

was obtained for the system based on the quadratic performance index, and was expressed 

, which assures asymptotic stability   0x  as 

. A good functional correspondence was shown to exist between the model and the data 
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n billet mills, accurate mathematical models of interstand 
cooling of rolled steel are required for the analysis and control 
of the shape distortions observed during air-cooling of the final 
product. In relation to the thermal distortions observed during 
hot rolling of steel in billet mills (Obinabo, 1991), these one-
dimensional models cannot be used with confidence to 
describe the origins and orientations of these defects. 

asingly, the models reported in the existing literature are 
aimed at predicting the thermal conditions of the rolls in both 
hot and cold strip mills while a very scant treatment is, so far, 
given to the determination of the actual temperature 

in the workpiece itself. 
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A variety of methods of solution has been adopted in the 
literature for the analysis of the unsteady heat conduction 
problem. In general, they are classified into two broad 
categories: (a) approximate mathematical solutions using more 
or less realistic cooling conditions, and (b) exact solutions 
under conditions rarely achieved in practice. Here the 
analytical methods are used to find solutions without 
mathematical approximations. This is made quite difficult by 
the unsteady heat flow, and solutions obtained generally 
describe particular ideal cases. 
    
Approximate analytical procedures 
 
The approximate methods of analysis applied to transient heat 
transfer problems include the electrical and hydraulic analogue 
techniques (Chapman, 1974), the finite difference methods and 
the heat balance integrals otherwise know as the integral-
profile method (Hills, 1965). A number of works has been 
reported which makes use of the first two techniques. The 
finite difference method has the disadvantage of being very 
lengthy and tedious to apply, and the entire procedure must be 
repeated each time a parameter is assigned a new value. The 
integral-profile method, on the other hand, seems to have 
attracted very little attention although it has been shown (Hills, 
1965) to be successful in the in the prediction of heat transfer 
rates during solidification of steel, for instance, and in  a wide 
range of situations, without involving large amounts of 
computation time.  
 
The finite element method has also featured in the analysis of 
heat flow problems in the continuous casting of steel (Zorzi 
and Mazzantini, 1982). However, the technique has most 
commonly been limited to stress analysis and related crack 
formulation problems (Sorimachi and Brimacombe, 1977) 
which in conjunction with finite difference models, has been 
used to determine the thermal fields. The work of Soliman and 
Fakhroo (1972) makes use of a variational formulation and 
triangular finite elements to describe a two-dimensional 
problem of heat conduction in steel ingots, accounting for the 
variations of the specific heat and the thermal conductivity in 
the model. Other methods of analysis considered in this work 
include the boundary layer method, the linear temperature 
profile method and the method of heat balance integral. 
 
The boundary layer method of analysis 
 
Many of the contributions to the development of temperature 
models in hot processes are based on the principle of fluid flow 
in a laminar boundary layer, using an approximate method 
similar to that developed by Von Karman (1934) and 
Pohlhausen (1921). In this method, the rate of growth of the 
boundary layer at any point is assumed to be solely determined 
by its thickness at that point, and by other local properties. 
Based on this assumption, a first order differential equation 
was derived (Welty et al., 1976) for the growth of the layer. 
The form of this equation is determined by the use of an 
auxiliary function for the velocity profile within the boundary 
layer and by the application of the conservation of momentum. 
The boundary layer method has also been used (Cooper, 1969) 
to solve transient heat conduction problems in a semi-infinite 
solid with temperature-dependent conductivity and constant 

surface heat flux. The existence and significance of similarity 
solutions for a semi-infinite solid with temperature-dependent 
conductivity was established by Peletier (1970) via rigorous 
mathematical argument. In a related study, Cook (1970) 
showed that accounting for the variable properties of the 
material may significantly influence the heat transfer rates 
deduced from the measurement of a solid metal. When 
transient heat conduction is confined to a thin layer near the 
surface of a solid, the solution to the problem was generally 
approximated to that of a semi-infinite solid (Letcher, 1969).  
A generalization of this technique has been developed for 
curved surfaces (Letcher, 1969). A method was also developed 
for solving the unsteady heat equation in the case in which the 
bounding surfaces of a solid change with time while 
maintaining a similar shape (Grinberg, 1969). It has also been 
reported (Chao and Chen, 1970) that a series solution method 
in the Laplace transform developed in connection with a 
convection problem for a fluid sphere is useful in transient heat 
conduction problems. 
 
Linear temperature profile methods 
 
Several assumptions of linear temperature distributions have 
been made in the treatment of heat flow problems in the 
cooling of cast steel billets (Hills, 1963). However, it was 
observed that this assumption produced some serious errors 
when the computed values were compared with the measured 
values. Hills (1963) also noted that with any given surface 
temperature value, an assumed linear temperature distribution 
underestimates the thermal energy stored in the solid metal, 
and that any underestimation of the temperature gradient at the 
outer surface of the metal is even more serious since the value 
is needed, where the surface temperature is not specified, to 
relate the surface temperature to both the dimensions of the 
solid metal and the heat flux leaving the surface. A simplifying 
assumption was adopted (Hills, 1963) to avoid the difficulty of 
specifying the surface temperature.  
 
Mathematical formulations  
 
The problem considered is one of time-and space dependent 
heat flow in the square steel ingots produced in Delta Steel 
mill at Ovwian-Aladja, Warri, Nigeria. The approach in the 
development of the model was based on the assumption that 
the steel grade considered was homogeneous in terms of its 
metallurgical constitutions. This enabled the thermal 
conductivity and the specific heat capacity of the material to be 
assumed constant across any dimension of the cast ingot. 
Another important aspect of the model is the provision for 
temperature independence of these functions. A series of 
empirical equations has been adopted in the literature (Yang 
and Lu, 1986) for the different phases in steel over the whole 
temperature range. It is indicated that above the temperature of 
900oC, the thermal conductivity is temperature-dependent. 
Consequently, two simultaneous ordinary differential 
equations were derived for these parameters which satisfied the 
following unsteady heat conduction equation  
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where 
c

k


  , 

c

Q
Q


 , xv , yv , zv  are component of the 

velocity vector v


. 







 denotes the rate of change of 

temperature in space and time along the workpiece. The length 
of the deforming bar was considered infinite since the rolling 
process in the mill was continuous. Consequently, conduction 
of heat in that dimension relative to the other dimensions was 
negligibly small, so that the temperature changes in that 
direction is a function of time only. Applicability of (1) was 
based on the assumption that the rolling process in the mill was 
steady relative to the roll stand, and that the motion of the 
workpiece was restricted to the direction of rolling only. The 
heat input, Q, due to the deformation in the roll gap was 
assumed uniformly distributed in the workpiece.  Thus 
 

0







                                          ………………………(2) 

 

0 yx VV                                      ……………………….(3) 

 
At any point z along the length of the ingot from a chosen 
position, the time during which the workpiece was exposed to 
the cooling effects of the mill was defined (Obinabo, 1991) 
from a chosen position, this time was defined as:  
 

v

z
                                                  ………………………(3) 

 
The origin of z was at the instance the workpiece exits the roll 

gap, and this is at time 0 . Equation (3) applies to the 
workpiece at any point between two roll stands, that is, at exit 
from the roll gap of one stand to the point just before entry into 
the roll gap of the next stand. It also applies to the portion of 
the mill between the last finishing stand and the cooling bed. In 
each of these regions the speed of the workpiece is assumed 
constant. Therefore, to transform the foregoing results (1) in 
terms of this variable  , the following operator was derived 
from (3) as:  
 





 













Vdz

d

z

1   …………………………………… (4) 

 
and, on substitution into (1), yields (Yu and Sang, 2007; Kwon 
and Bang, 2000): 
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In the weighted form (Yu and Sang, 2007), equation (5) 
becomes 
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and reduced using Green’s theorem (Pepper and Heinrich, 
1992) as follows: 
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where 
 
 




c

k
  and   denotes the two-dimensional 

domain. B  and d  represent respectively the boundary and 

the surface element of B  over which the normal gradients 

were applied. Also n  is the outward normal unit vector at the 
boundary  . To facilitate computation of (5) the 

dimensionless variables due to Hills (Obinabo, 1991) were 
employed to transform the equation to the following form 
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which, on introduction of the integral sign, gave 
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where 
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 and which, on further simplification and 

ignoring the asterisk, gave 
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The left hand side of (10) was evaluated first by integrating 
with respect to y*, then with respect to x* to yield the 
following: 
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where suffix o represents the origin of the coordinate axes, 
x  

and 
y  are dimensionless spatial extents in the x  and y  

directions respectively. Writing (11) in terms of the surface 
heat flux, q gives 
 

 
yy tt hq            ………………………………………(12) 

 

then (12) becomes: 
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The first term on the right hand side of equation (10) was 
evaluated (Obinabo, 1991) to yield the following result: 
 

     



















































d

dt

d

dt
dydx

d

d
dydx

y

t
x

t yx

 …. (14) 

 
Similarly, evaluating the second term on the same right hand 
side of the equation yields: 
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Combining these results and ignoring the asterisks, the 
following was obtained: 
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Auxiliary function for  yx,   

 
The result shown in equation (16) could not as yet be solved 
because the temperature distributions appearing in the integrals 
were not known. Some functions were required to represent 
these temperature distributions in the workpiece during 
cooling. Consequently it was imperative to design an accurate 
temperature profile   which, in itself, satisfies the boundary 
conditions that prevail in the cooling of the bars during rolling 

and was a function of x, y and  . In considering the two-

dimensional steady state heat conduction problem, the integral 
approaches proposed by Ritz and Kantorovich (Yang and Lu, 
1986) report auxiliary functions with at least one unspecified 
parameter. Ritz method assumes a quadratic function in the 
dimension that runs across the width of the workpiece, and an 
exponential function in the dimension that runs along the 
length of the workpiece. The result of the two-dimensional 
profile was defined mathematically as: 
 

    BXeyAyx  22,                         …………….. (17) 

 
where A and B were determined from the boundary conditions, 

and    represents the width of the workpiece of infinite length. 
Kantorovich’s method was almost similar to Ritz’s. The 
difference was that the form of the profile assumed in the 
dimension that runs along the length of the flat bar was an 
unknown function. This reduced the Ritz function to the form. 
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where X(x) was required to be determined from the  boundary 
conditions. 
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In current investigation, a 2-D auxiliary function based on the 
spatial cooling profiles reported by Obinabo (1991) was 
proposed for the surface and width dimensions of the 
workpiece as follows 
 

    2
21

4
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2
2, ybybbxaxaayx oo   …….. (20) 

 
The spatial distribution was symmetrical in the surface 
dimension and asymmetrical in the width dimension. During 
air cooling the workpiece rested surface–wise on the cooling 
bed. In this condition, the top surface was exposed to the free 
air stream surrounding it while the bottom surface exchanged 
heat by conduction with the cooling bed. This condition gave 
rise to (20). The a’s and b’s were determined from the 
boundary conditions. Expanding (20) and ignoring terms 
containing powers of x’s and y’s higher than 2, the following 
was obtained. 
 

  2
2

2
21, xbaybaybabayx ooooo      ………….. (21) 

 
The justification for truncating (21) is embodied in the 
reasoning that the variables x and y became non-
dimensionalised by defining the following: 
 

x

t
x x                        …………………………………...(22)       

    

y

t
y

y
                     …………………………………..….(23) 

where tx and ty are instantaneous spatial extents along the 
directions of x and y respectively. It then follows that the 
maximum value either tx or ty can take in (23) and (24) is x            
or y. Consequently, in analyzing the heat distributions within 
the workpiece, the values of x and y in the auxiliary function 
will always be fractional and higher powers of fractions 
reduced them to negligibly small quantities, and the terms 
containing them tend to zero. For all values of x and y, the 
expansion to power 2 obtained in equation (22) seemed quite 
reasonable, and therefore, represents the approximate auxiliary 
function required to compute the temperature distributions in 
the workpiece. 
 
The final form of the model 
 
Apart from the roll gap where heat was generated within the 
workpiece due to deformation, no heat sources were known to 
exist in the mill train. Consequently, a zero heat flow condition 
across the centre line of the workpiece was assumed so that the 
following result was obtained from (16). 
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Difficulties associated with measurement of the surface 
temperature of the workpiece during the rolling process made 
direct measurement of the heat transfer coefficients at these 
locations almost impossible. Indirect method of measurement 
which involves use of radiation pyrometers has been adopted 
generally (Kim and Huh, 2000; Polukhin, 1975). The 
disadvantage of this technique of temperature measurement 
was that the other modes of cooling were not monitored. 
Consequently, the accuracy of the results so obtained depends 
largely on the effectiveness of the radiation mechanism, and 
the surface heat flux of the material becomes a direct function 
of the radiation mechanism. Harding (1976) argued that this is 
misleading since convection was a more important heat 
transfer mechanism than was generally thought. Polukhin 
(1975) and Hills (Obinabo, 1991) also considered a combined 
effect of convection and radiation mechanisms and related it to 
the surface heat flux of the workpiece. Meanwhile, in their 
classical experiments on heat flow in continuous casting of 
steel ingots, Savage and Pritchard (Hills, 1963) obtained a 
relationship that expresses the surface flux as a function of 
time. This was done by measuring the rise in the temperature 
of the cooling water. The data so generated was used to 
estimate the total quantity of heat removed from the surface of 
the cooling steel ingot. The expression obtained from the heat 
flux was of the form  
 

  bqq
ooo "           ………………………………..(25) 

 

for which the values of 2628 and 221.9 were obtained for oq  

and b respectively; b is constant of linear relationship between 
the heat flux and dwell time. In terms of the dimensionless 
variables used in the development of this work, this expression 
reduces to 
 

 1q                          …………………………(26) 

 

where 
2628

9.221
  08.0 and is a constant of linear 

relationship obtained by transforming (25) to its dimensionless 
form. This result was reduced in Obinabo (1991) to the 
following:  
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From (27) the following result was obtained: 
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q
          ……………………………….(28) 

 

Hills (1963) shows that the heat transfer coefficient at the 
surface of the workpiece bears a linear relationship with time, 
and gives the surface heat flux as:  

  ooo hq  1"
          ……………………………….(29) 

 
where the subscript o represents the values on the surface of 
the workpiece, and   represents a constant of linear 

relationship. In terms of the dimensionless variables this result 
becomes: 
 

  1q          …………………………………….. 

(30) 
 
which yields:  
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The following result was deduced from (31)   
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f

q
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For the modes of cooling the workpiece considered in this 
work, the surface heat flux was given by an equation of the 
form (Eckert et al., 1996)  
 

    AA hFq   44
          ………………..(33) 

 
where  θA = ambient temperature  
θ   = measurement surface temperature  
 

 = Stefan-Boltzman constant 
4212107.56  kkWm  

F = shape factor accounting for the geometry of the surface of 
the workpiece radiating        heat. 
 
In terms of the dimensionless variables (33) becomes:  
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h
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where 
3F

h
h  ,   = dimensionless absolute ambient 

temperature.  
 
On the surface heat transfer coefficient of steel products 
cooling in air, a number of results has been deduced by in the 
existing literature. On the run-out table of a strip mill, Labiesh 
(1982) reported a wide range of total heat transfer coefficient 

in the range 
1212060  kWm  for a strip piece being 

transported from the roll stand to the cooling bed. Several 
other publications have been made on the predication of this 
value, and some of them have been discussed extensively in 
Obinabo (1991). A complete analysis of (24) was possible only 
when an auxiliary function was defined and the surface heat 
flux adequately accounted for. When the three forms of the 

26728                              International Journal of Current Research, Vol. 08, Issue, 02, pp. 26724-26733, February, 2016 
 



surface heat flux variation were considered, the following 
results were obtained. 
From (26) 
 

)()2/5(),( 1817   yyx o

)1)(2/()1)(2/(   xy            ……….(35) 

 
From (30), the auxiliary function becomes: 
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)1)(2/()1)(2/(   xy             ………(36) 

 
From (34), the auxiliary function becomes: 
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Now taking the integrals: 
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From (35) the following was obtained 
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Similarly from (36) and (37) respectively the following were 
obtained: 
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From these results, therefore, (16) is written for each of the 
cases considered above in the x-and y- dimensions as follows:  
 
From (38), the following were obtained: 
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In the y-dimension: 
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From (39), the following were obtained: 
 
In the x-dimension:   
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In the y-dimenson: 
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From (40), the following were obtained:  
 
In the x-dimension: 
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In the y-dimension: 
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From (41) and (42), the following were obtained: 
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Similarly from (43) and (44), the following were obtained: 
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From (45 and (46), the following were obtained:  
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The problem was finally represented globally using matrix 
notation as follows: 
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where the D's represent derivatives with respect to time.   

and   were deduced directly from the preceding equations as:  
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We now let the state variable x1 = 0o(t) in (39) and (40) so that 
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or, using the matrix notation, the above result becomes  
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in the y-dimension 
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or generally 
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Optimal Control of the State Model 
 
In general, stability is a very important characteristic of the 
transient performance of dynamic systems. Almost every 
functional system is designed to be stable, and within the 
boundaries of parameter variations the system performance can 
be improved. The system represented by (52) can be 
investigated for asymptotic stability by studying the 

eigenvalues of the system when   ,ouA  is constant 
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(Mayne, 1973; Obinabo, 2008), or by studying the solution 

system  u  of (52) with the initial condition   I0  

where I  is the unit diagonal matrix if   ,ouA  happens 

to be an arbitrary function of  . Here, an optimal feedback 

control law  u  was obtained for the linear inhomogeneous 

system based on the quadratic performance index, and was 

expressed as a function of x  given by  u  xf , which 

assures asymptotic stability   0x  as  . The 

system was represented by  
 

  oxxxuBxAx
dt

d
 )(,)()(   

 
Minimizing the quadratic performance index  
 

              duRuxQxJ Tr





0

 

 

where     RandQ  are positive and semi-definite and 

positive respectively, leads to an optimal control which us a 
linear function of the state and is given by 
 

          xSBRu T1  

 

where  S is the solution of the matrix Riccati equation given 

by  
 

                    0,    SQSRBSSAASS TT  

 

    RandQ  
may be chosen as unit diagonal matrices 

for convenience. Such a choice also implies that all the control 
and state variables are equally weighted in the cost function. 
Now from (50) we derive equations for static cooling of the 
work piece on the cooling bed of the mill (where V = 0 and 
assumed unit) as follows:  
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The performance criteria is rewritten as  
 

        dttutxxuJ
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






























2
1

0
0

1
1

0

1
  

or.
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which, on comparison with the general form, 

        dtttugtxtTxuJ
T

TT
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From (57) 
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Now the costate variable is  
 

    )(),()()()( TpttptAtp
dt

d T …...(61) 

 
 
NOW substitute for AT (t) and B (t) so that the following may 
be obtained  
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from which  
 

  1)(1 tp
dt

d
(62) 

 

and      )()( 12 tptp
dt

d
 (63) 

 

From (62) Cttp )(1 (64) 

 

0)(1)1(1)(1)1(,
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)1(,)( 2211 
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
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Now substitute these for )(1 tp in (64) to yield 1+t= C, that is, 

1+1=C  :.C = 2 giving 
 

ttp  2)(1  

 
From (63)
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Now we define the Hamiltonian  
 

)(),()(),,,( BuAxptugxttupxH TT   
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u is unconstrained hence we find 0



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From (65) 
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Equating to zero gives  
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Hence the control law for the static cooling of the rolled steel 
on the cooling bed of the mill is 


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3
2

22

1 2
. t

t
u


which is optimal. 

 
Conclusion 
 
This study has established an optimal control law for static 
cooling conditions, and an experimental validation test which 
enabled a two-dimensional heat flow model to be obtained as a 
function of the rolling speed for rectangular cross-sectional 
bars rolled from plain carbon steel. The model, which was 
based on the Hills’ generalized integral profile method is of the 

form ),( ,,2

2

vqf
d

d

d

d
yxyt 






 , and applies to both interstand 

cooling and cooling of the final products on the cooling bed of 

the mill. The terms 
yxt yx

q ,,
,
 and V characterize the surface 

heat flux, rate of change of the dimensions of the workpiece 
during cooling and the rolling speed respectively. The validity 
of the model was confirmed in Obinabo (1991) by comparing 
the profiles of the heat flow determined by experiment for 
static models with the theoretical results. The study shows that 
a good functional correspondence exists between the model 
and the data reported in the literature.   
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