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INTRODUCTION 
 
In 1986, Maki, (1986) continued the work of Levine and Dunham  on generalized closed sets and closure operators by acquainting  
the concept of  sets in topological spaces. In 2008 M.
(g, -g, g) and their properties. They also studied the concept of Λ closed maps.
new maps and their notions via Λ open sets and Λ closed sets. In 2007 M.Caldas,
the concept of Λ irresolute maps. The notion of irresolute functions weak was introduced and investigated by M.
Recently Vijilius @el familiarized a new set named gs
function called gs irresolute function and contra gs
properties and the connections between these maps and other existing topological maps are studied.
(Y,σ)   and (Z,�) (or simply X, Y and Z) will always denote topological spaces on which no separation axioms are assumed unless 
explicitly stated. Int(A), Cl(A),	�Int (A), ClA),
of A, lambda closure of A gsΛ closure of A and gsΛ Interior of A respectively.
 
Preliminary Definitions 
 
Let us recall some definitions in sequel which is useful for this paper. 
 

Definition: 1 
 
A topological space (X, τ) is said to be  
 

1. (Jin Han Park et al., 2002) a generalized closed if Cl(A)  
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2. (Caldas et al., 2008) a subset A of a space X is called Λ-closed if A = B⋂C, where B is a Λ-set and C is a closed set. 
3. (Caldas et al., 2008) a subset A of X is said to be a Λg closed set if Cl(A)⊆ U whenever A⊆ U , where U is Λ open in X. 
4. (Missier, 2013) a subset A of X is said to be a gsΛ closed set [23] if �Cl (A)⊆ U whenever A⊆ U, where U is  semi open in X. 
The complement of above closed sets are called its respective open sets. The gsΛ closure (respectively closure, Λ closure) of a 
subset A of  X denoted by gsΛCl(A), (Cl(A),	�ClA)  is the intersection of all gsΛ closed sets (closed sets, Λ closed sets) 
containing A. 
  
Lemma: 2 (Jin Han Park et al., 2002) 
 

1. Every Λ-set is a Λ-closed set, 
2. Every open and closed sets are Λ-closed sets. 
 

Definition: 3 
 

A function f: (X.τ) ⟶(Y,σ)   is called 
 

1. gsΛ closed if f(F) is Λ closed in  (Y, σ)   for every Λ closed set F of (X. τ), 
2. (Levine and Semi, 1963) semi continuous   if f-1(V) is semi open in (X,τfor every open set V in (Y, σ), 
3. (Maki, 1989) Λ continuous if f-1 (V) is Λ open (Λ closed) in (X.τ) for every open (closed) set V in (Y, σ), 
4. (Dontchev, 1996) contra continuous if f-1 ( V) is open (closed) in (X,τfor every closed (open) set V in (Y, σ), 
5. (Dontchev and Noiri, 1999) contra semi continuous if f-1 ( V) is  semi open (semi closed) in (X, τ for every closed (open) set V 

in (Y,σ), 
6. (Caldas et al., 2006) contra Λ continuous map if f-1 ( V)  is Λ open (Λ closed) in (X,τ for every closed (open) set V in (Y, σ), 
7. (Jin Han Park et al., 2002) gc irresolute if the inverse images of g closed sets in(Y,σ)   are g closed in (X.τ), 
8. (Caldas et al., 2007) Λ irresolute if the inverse image of Λ open sets in Y are Λ open in (X.τ), 
9. (Missier et al., 2012) gsΛ closed map (gsΛ open map) if the image of each closed set (open set) in X is gsΛ closed (gsΛ open) 

in Y. 
10. (Missier and Vijilius, 2013) gsΛ continuous function if the inverse image f-1 (V)  of each closed set (open set) V in (Y,σ) is 

gsΛ closed (gsΛ open) in (X.τ). 
11. (Vijilius et al., 2012) M.gsΛ closed map (M.gsΛ open map) if the image of each gsΛ  closed set (gsΛ open set) in X is gsΛ 

closed (gsΛ open) in Y 
 

Lemma: 4 (Caldas, 2006)  
 

1.  i) A space (X. �) is said to be ΛS-space if every Λ open subset of X is semi open in X. 
2.  ii) A space (X, τ)is said to be Λ-space if every Λ closed(Λ open) subset of X is closed(open) in X. 
 

Preposition-5 (Missier and Vijilius, 2012 and 2013) 
 

In a topological space (X.τ), the following properties hold: 
 

1. Every closed set is gsΛ closed(gsΛ open), 
2. Every open set is gsΛ closed (gsΛ open), 
3. Every Λ closed (Λ open) set is gsΛ closed (gsΛ open), 
4. Union (intersection) of gsΛ closed (gsΛ open) sets is not gsΛ closed(gsΛ open), 
5. In T1  space every gsΛ closed set (gsΛ open) is Λ closed (Λ open), 
6. In Partition space every gsΛ closed(gsΛ open) set is g closed(g open), 
7. In a door space every subset is gsΛ closed (gsΛ open), and 
8. In T 1/2 space every subset is gsΛ closed (gsΛ open). 
 
 Definition: 3 
 
1. 1.Contra gsΛ continuous function  if the inverse image f-1 ( V) of each closed set (open set) V in (Y, σ) is gsΛ open (gsΛ 

closed) in (X.τ) . 
2. gsΛ irresolute  function  if the inverse image f-1 ( V)  of gsΛ  each closed set (gsΛ open set)  V in (Y,σ)   is gsΛ closed (gsΛ 

open) in (X.τ) . 
 

Observations on gs functions 
  
Theorem: 1 
 
Composition of gsΛ irresolute functions is gsΛ irresolute. 
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Proof: 
 
Let f : XY and g:YZ be  gsΛ irresolute functions. 
Let F be a gsΛ open set of (Z,ϖ). Then g-1(F) is a gsΛ open set in (Y,σ)   as g:(Y,σ) ⟶(Z,ϖ)    is a a gsΛ irresolute function and f-

1g-1(F)=(gof)-1(F) is a  gsΛ open  set in (X,τ) as f  is a a gsΛ irresolute function. Thus gof: (X.τ) ⟶ (Z,ϖ)    is a gsΛ  irresolute 
function. 
 
Theorem: 2 
 
Composition of contra gsΛ irresolute functions is gsΛ irresolute. 
 
Proof: 
 
Let f : XY and g:YZ be contra  gsΛ irresolute functions. 
Let F be a gsΛ open set of (Z,ϖ). Then g-1(F) is a gsΛ closed set in (Y,σ) as g: (Y,σ) ⟶(Z,ϖ) is a contra gsΛ irresolute function 
and f-1(g-1(F))=(gof)-1(F) is a  gsΛ open set in (X,τas f:(X.τ) ⟶(Y,σ)   is a contra gsΛ irresolute. Thus  gof:(X.τ) ⟶ (Z,ϖ)    is a 
gsΛ  irresolute function. 
 
Theorem: 3 
 
If f: (X,τ) ⟶ (Y,σ)   contra  gsΛ irresolute function and g:(Y,σ)  ⟶(Z,ϖ) gsΛ irresolute function, then gof:(X.τ) ⟶ (Z,ϖ)   is a 
contra gsΛ irresolute function . 
 
Proof: 
 
Let F be a gsΛ open set of (Z,ϖ). Then g-1(F) is a gsΛ open set in (Y,σ)   as g:(Y,σ)  ⟶(Z,ϖ)    is a  gsΛ irresolute function and f-

1(g-1(F))=(gof)-1(F) is a  gsΛ closed set in (X,τ) as f:(X.τ) ⟶(Y,σ)   is a contra gsΛ irresolute. Thus gof:(X.τ) ⟶ (Z,ϖ)    is a 
contra gsΛ  irresolute function. 
 
Theorem: 4 
 
Composition of gsΛ irresolute functions is gsΛ continuous function. 
 
Proof: 
 
Let f:(X.τ) ⟶(Y,σ) and g:(Y,σ)  ⟶(Z,ϖ) be  gsΛ irresolute functions. 
Let F be a open set of (Z,ϖ). Then F is also gsΛ open set in (Z,ϖ) [Proposition 5].Thus we have g-1(F) is a gsΛ open set in (Y,σ)   
as g:(Y,σ)  ⟶(Z,ϖ)    is a gsΛ irresolute function and  
f-1(g-1(F))=(gof)-1(F) is a gsΛ open set in (X,τ) as f:(X.τ) ⟶(Y,σ)  is a gsΛ irresolute  function. Hence  gof:(X.τ) ⟶ (Z,ϖ)   is a  
gsΛ continuous function. 
 
Theorem: 5 
 
Composition of contra gsΛ irresolute functions is gsΛ continuous function. 
 
Proof: 
 
Let f:(X.τ) ⟶(Y,σ) and g:(Y,σ) ⟶(Z,ϖ) be  contra gsΛ irresolute functions. Let F be a open set of (Z,ϖ). Then F is also gsΛ open 
set in (Z,ϖ) [Preposition 5].Thus we have g-1(F) is a gsΛ closed set in (Y,σ)   as g:(Y,σ)  ⟶ (Z,ϖ)  is a contra gsΛ irresolute 
function and f -1 (g-1(F))=(gof)-1(F) is a gsΛ open set in (X,τ) as f:(X.τ) ⟶(Y,σ)  is also a contra gsΛ irresolute  function. Thense 
gof: (X.τ) ⟶ (Z,ϖ)  is a  gsΛ continuous function. 
 

Theorem: 6 
 

Composition of gsΛ irresolute functions is contra gsΛ continuous function. 
 

Proof: 
 

Let f:(X.τ) ⟶(Y,σ) and g:(Y,σ)  ⟶ (Z,ϖ) be  gsΛ irresolute functions 
Let F be a open set of (Z,ϖ). Then F is also gsΛ closed set in (Z,ϖ) [Preposition 5]. Thus we have g-1(F) is a gsΛ closed set in 
(Y,σ)   as g:(Y,σ)  ⟶(Z,ϖ)    is a gsΛ irresolute function and f-1 (g-1(F))=(gof)-1(F) is a gsΛ closed set in (X,τ) as f:(X.τ) ⟶(Y,σ)  
is a gsΛ irresolute  function. Consequently gof: (X.τ) ⟶ (Z,ϖ)   is a contra gsΛ continuous function. 
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Theorem: 7 
 
Composition of contra gsΛ irresolute functions is contra gsΛ continuous function. 
 

Proof: 
 

Let f:(X.τ) ⟶(Y,σ) and g:(Y,σ)  ⟶ (Z,ϖ) be contra  gsΛ irresolute functions 
Let F be a closed set of (Z,ϖ). Then F is also gsΛ open set in (Z,ϖ) [Preposition 5]. Thus we have g-1(F) is a gsΛ closed set in 
(Y,σ)   as g:(Y,σ)  ⟶(Z,ϖ)    is a contra gsΛ irresolute function and f-1 (g-1(F))=(gof)-1(F) is a gsΛ open set in (X,τ) as f:(X.τ) 
⟶(Y,σ)  is a contra gsΛ irresolute  function. Hence  gof:(X.τ) ⟶ (Z,ϖ)   is a  contra gsΛ continuous function 
 
Theorem: 8 
 

Let f:(X,τ) ⟶ (Y, �) and g:  (Y, �)  ⟶ (Z,�)		contra gsΛ irresolute function, then gof: (X.τ)    (Z,�)		is a contra Λ continuous 
function if (X,τ) is a T1 space. 
 
Proof: Let f:(X.τ) ⟶(Y,σ) and g: (Y,σ)  ⟶(Z,ϖ) be  contra gsΛ irresolute functions. 
Let F be a open set of  (Z,�). Then F is also gsΛ closed set in (Z,�) [Preposition 5]. Thus we have g-1(F) is a gsΛ open set in 
(Y,) as g: (Y,))⟶(Z,ϖ)    is a contra gsΛ irresolute function and f-1 g-1(F) = (gof) -1(F) is a gsΛ closed set in (X,τ) as f: (X.τ) ⟶ 
(Y,)  is a contra gsΛ irresolute  function. Now (gof)-1(F) is a Λ closed set in X, as X is a T1 space,. Thus gof: (X,τ)⟶ (Z,�)			is a 
contra Λ continuous function. 
 
Theorem: 9 
 
Composition of gsΛ irresolute functions is a Λ continuous function if the domain of the composite function is a T1 space. 
 
Proof:  
 
Let f:(X.τ) ⟶(Y,σ) and g:(Y,σ)  ⟶(Z,ϖ) be   gsΛ irresolute functions. 
Let F be a  closed set of  (Z,�). Then F is also gsΛ closed set in (Z,�) [Preposition 5]. Thus we have g-1(F) is a gsΛ closed set in 
(Y,) as g: (Y,))⟶(Z,ϖ)    is a gsΛ irresolute function and  
f-1 g-1(F) = (gof) -1(F) is a gsΛ closed set in (X,τ) as f: (X.τ) ⟶ (Y,)  is a  gsΛ irresolute  function. Now (gof)-1(F) is a Λ closed 
set in X, as X is a T1 space[Preposition 5]. Thus gof: (X,τ)⟶ (Z,�)			is a  Λ continuous function. 
 
Theorem: 10 
 
Composition of contra gsΛ irresolute functions is a Λ continuous function if the domain of the composite function is a T1 space. 
 
Proof: 
 
Let f:(X.τ) ⟶(Y,σ) and g:(Y,σ)  ⟶ (Z,ϖ)  be   gsΛ irresolute functions. 
Let F be a  closed set of (Z,�)	. Then F is also gsΛ closed set in (Z,ϖ) [Preposition 5]. Thus we have g-1(F) is a gsΛ open set in 
(Y,) as g: (Y,))⟶(Z,ϖ) is a contra gsΛ irresolute function and  f-1 g-1(F) = (gof) -1(F) is a gsΛ closed set in (X,τ) as f: (X.τ) ⟶ 
(Y,)  is a contra gsΛ irresolute  function. Now (gof)-1(F) is a Λ closed set in X, as X is a T1 space. 
Thus gof: (X,τ)⟶ (Z,�)			is a contra Λ continuous function. 
 
Theorem: 11 
 

If f:(X,τ⟶ (Y,) is a gsΛ irresolute function and g: (Y,)⟶ (Z,ϖ)    is a gsΛ continuous function, then gof:(X.τ) ⟶ (Z,ϖ)   is a 
gsΛ continuous function. 
 

Proof: 
 

Let f : (X,τ)⟶ (Y,) is a gsΛ irresolute function and g: (Y,)⟶ (Z,ϖ) is a gsΛ continuous function. Let F be a  closed set of 
(Z,�)	. Then we have  g-1(F) is a gsΛ closed set in (Y,) as  
g: (Y,))⟶(Z,ϖ) is a gsΛ continuous function and  f-1 g-1(F) = (gof) -1(F) is a gsΛ closed set in (X,τ) as f: (X.τ) ⟶ (Y,)  is a  gsΛ 
irresolute  function. It can be observed that gof:(X.τ) ⟶ (Z,ϖ)   is a gsΛ continuous function. 
 
Theorem: 12 
 
If f:(X,τ) ⟶ (Y,)  is a gsΛ irresolute function and g: (Y,)  ⟶(Z,ϖ)    is a Λ continuous function, then gof:(X.τ) ⟶ (Z,ϖ)   is a 
gsΛ continuous function. 
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Proof: 
 
Proof  follows as every Λ open set is gsΛ open set. 
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