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INTRODUCTION

0 where is a sequence of independent random variables defined on a
T(6) ET(,(H,w):Zg,.(za)cosjﬁ,(l.l) gl(w)5g2(w)5 """"" gn(w) ! p

J=1

probability space ((Q, 4,Pr), each normally distributed with mean zero and variance one. Much has been written concerning

N (0,27)> the number of crossings of a fixed level K by T(6), in the interval (0,2 7). From the work of Dunnage (1966) we know
that, for all sufficiently large n, the mathematical expectation of N (0,27) = N(0,27) is asymptotic to 2n/ \/g .In (3) and (5) we

show that this asymptotic number of crossings remains invariant for any K =K, such thaKz/n—>Oasn — oo, However, less
information is known about the variance of N(0,27). The only attempt so far is ....where an (fairly large) upper bound is

obtained. Indeed this could be justified since the problem with finding the variance consists of different levels of difficulties
...... with finding the mean. The degree of difficulty with this challenging problem is reflected in the delicate work of Maslova
(1974) and Sambandham et al. (1983) with above obtained the variance of N for the case of random algebraic polynomial S$70g )

j g ;X3
a case involving analysis that is usually easier to handle. Qualls (1970) also studied the variance of the number of real roots of a
random trigonometric polynomial. However, he studied a different type of polynomial z;} 0a jcos jO+b jsin j0 which has the
property of being stationary and for which a special theorem has been developed by Cramer and Leadbetter (1967). Here we look
at the random trigonometric polynomial (1.1) as a non-stationary random process. First we are seeking to generalize Cramer and
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Leadbetter’s (1967) works concerning fractional moments which are mainly for the stationary case. To evaluate the variance

specially, and some other applications generally it is important to consider the covariance of the number of real zeros of é (f ) in
any two disjoint intervals. To this end, let 5 (t ) be a (non-stationary) real valued separable normal process possessing continuous
sample paths, with probability one, such that for any (917&92 the joint normal process 5(61), 5(02), §'(01) and 6'(62) is

non singular. Let (a,b) and (c,d) be any disjoint intervals on which g (Z ) is defined. The following theorem and the formula for
the mean number of zero crossings (1, page 85) obtain the covariance of N(a,b) and N(c,d).

Theorem 1. For any two disjoint intervals, (a,b) and (c,d) on which the process £, is defined, we have

db © ©
E{N(a,b)N(c.d)}=[[ [ [|xv[p610,(0.0,x,y)dxdyd 60,d6,
ca—ox0—

0

where for a<f<bandc <0,<d , pO.0Nx1,%5, X, ) denotes the four dimensional density function of

$(01),5(02),¢'(01),5'(62).

A modification of the proof of Theorem 1 will yield the following theorem which, in reality, is only a corollary of Theorem 1.
Theorem 2: For p0.0,(x1,X5,X,y) defined as in Theorem I we have

db © ©
EN*(a,b) = H I ﬂxy‘p&ﬂz (0,0, x, y)dxdydd,d0,

C a—0—00

By applying Theorem 2 to the random trigonometric polynomial (1.1) we will be able to find an upper limit for the variance of its
number of zeros. This becomes possible by using a surprising and nontrivial result due to Wilkins (1991) which reduces the error
term involved for £n(0,27) to 0(1). We conclude by proving the following.

Theorem 3. If the coefficients gi(w), j=1,2,....n in (1.1) be a sequence of independent random variables defined on probability
space (Q, A,Pr), each normally distributed with mean zero and variance one, then for all sufficiently large n the variance of the

number of real zeros of T(6) satisfies
var{N(0,7)} = O(n*'?)
The covariance of the number of crossings

To obtain the result for the covariance, we shall carry through the analysis for the number of upcrossings, N,. Indeed, the analysis
for the number of down crossings would be similar and therefore, the result for the total number of crossings will follow. In order
to find E{N u(a,b) N u(c, d)} we require to refine and extend the proof presented by Cramer and Leadbetter (1, page 205).

However, our proof follow their method and in the following, we highlight the generalization required to obtain our result. Let
ap=(b—-a)k2™™ +a and similarly , _ (d=c)2™ +c for k1=0,1,2,...2™ -1and we define the random variable Xk,m and
J

Xlm as
| 0

w2 |1 @) <0< @)
0 otherwise

and

(2.1
0 otherwise

» {1 i) <0<t

e

In the following we show that
2" 12" 1

Y,= Z Z)ﬂc,m,Xl,m
=0 k=0
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tendsto N, (a,D)N, (c,d)as m —> oo with probability one. See also {1,page 287}. We first note that E{Nu(a, b)N,(c, d)}
is finite and therefore {N «a,b)N (c,d )} is finite with probability one. Let v and r be the number of upcrossings of £(z)in
(a,b) and (c,d), respectively, and write t,t,,.....t, and t’;, t’,...t"; for the points of upcrossings of zero by E@t) there can be found
two sub intervals for each I, and Jg,, such that z:(t) in one is strictly positive and in the other, it is strictly negative. Thus it is

apparent that Y,, will count each of tgt,’. That is, Y w2 VI for all sufficiently large m. On the other hand, if

E(@))E(by11) <0aNd E(bE(D; 1) < Othen (1) must have a 2670 i (g a51) and by by ) and hence ¥, vy and
hence Y, >N ,(a,b)N ,(c,d) as M —> O, with probability one. Now from (2.1) we can see at once that

2" 12" -1
E(Ym) = Z ZPr(Xk,le,m = l)
=0 k=0
2" 12"
=Y YPr(Xm=X,m=1) (2.2)
=0 k=0

We write 77, for the random variable 2" {£(a, 1) - &(a, )} and similarly 7', for 2" {f(b kil ) - & (b i )}, then we have
Pr(Xk,m ZXI,I’I’I = 1)
“PH(0 > Eay) > 27" g0 and 0> Eby) > 27 py)

w02 Mx 7MY

(][ [Pmk.i(z1.25,x,y)dzdzydxdy (2.3)
00 O 0

For k1, (z1,2,.x,y) denotes the four dimensional normal density function for 77, and e A simple calculation shows see (6) or (1

page 207), that if 0, and g, are the fixed interval (a,b) and (c,d), respectively and k,, and 1, are such that ¢ k <491<a Ko and
m m+

b l, <02<b - for each m, then all members of the covariance matrix of pm; (21,22,X,y) Will tend to the corresponding

members of the covariance matrix of pPg | ,0 2 (z1,22,X,y). This co-variance matrix is, indeed, nonsingular. Now let

t=2m 2 andr =2" - then from (2.2) and (2.3) we have

m_jom_| aooxy
EYy=>Y > g2m J. J.”Pm, k127" t27"r, x, y)dtdrdxdy
=0 k=0 0000

W 0,0, "2 "y, x, y)dtdrdxdyd 0,d0,  (2.4)

Il
[ —

|

S — 8
S — 8

i

S —_—

in which W, 0,0, (1,r,x,y)= Pm,k,I(t,r,x,y) for ak<01<ak+1 and bl<02<bl+l . It follows, similar to (1, page
206), that 111 —> 00

W,,,0,0,(2 7127 r, x, y) = p6,05(0,0, x, y) which together with dominated convergence proves Theorem 1.

The variance of the number of real zeros

It will be convenient to evaluate the EN(N-1) rather than the variance itself since N(N-1) can be expressed much more simply. The
proof is similar to that established above for covariance, therefore we only point out the generalization required to obtain the
result. To avoid degeneration of the joint normal density. p@lﬁz( 21,29, X, y) , we should omit those zeros in the squares of side

2™ obtained from equal points in the axes (and therefore to evaluate EN(N-1)). To this and for any g=(g;,g,) lying in the unit
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square and ¢>0, let A, denote the set of all points g in the unit square that for all s belonging to the squares of side 2™ set

containing g we have ‘51_5 2‘ > ¢ . Let Ame denote the characteristic function of the set A me - Finally, similar to the covariance

case, let
1 i) <0<Eag)
ki .
0 otherwise

for k=0,1,2,....2™-1, where a,= (b- a)kz_m + a. Now let

2" 2"

M, Z ZXk,le,rrﬂm(z_mkaz_mD (3.1

k=0 (1=0,/#k)

Similar to (1,page 205) we show that M,,. is a non decreasing function of m for any fixed e. It is obvious that M,,. is a non
decreasing function of e for fixed to m, and then by two applications of monotone convergence it would be justified to change the
order of limits in 1m0 lim o0 liM e - To this end, we note that each term of the sums of A/, . corresponds to a square

of side 2. For fixed & > 0, the typical term is one if both of the followings statements are satisfied; (i) every point s=(s,,s,) in
the square is such that ‘Sl_s 2‘ > ¢ and (il) Xgn=X;m=1. When m is increase by one unit, the square is divided into four

subsquares, in each of which property (i) still holds. Correspondingly, the typical term of sum is divided into four terms, formed
by replacing m by m+1 and each k or | by 2k and 21, for a4, and a;4. Since X ,=X;,=1 we must, with probability one, have at
least one of these four terms equal one. Hence M, is a non decreasing function of m.

In the following, we show that 1M yseo liM s 508 =N (N ,—1).
m

We first note that if the typical term in the sum of A me 1s nonzero it follows that ‘SI—S 2‘ > &, since it is impossible to
have £ (4 () <0< &(ag,)and E(ap)<0<E(ag,r): Therefore, the characteristic function appearing in the formula for

M,, in (3.1) is one and hence

21 2"
limesoMme= 20 2 XimXim (3.2)
k=0 (1=0,/k)

(3.2) is clearly in the form of Y,, defined in Section 2 except that the summations in (3.2) cover all the k and 1 such that k#1.
Hence from (3.2), we can write

limyy— o0 limy oM m=N (N y=1)

Therefore the same pattern as for the covariance case yields F [N Ja, b){N Ja,b)— l}]

=lim,.of | [
D(£)00

.Pg,-02(0,0,x, y)dxdyd 61d60,  (3.3)

where D(¢e) denotes the domain in the two dimensional space with coordinates 91,6’2 such that 4 <91,92< b and ‘01—92‘ >g.

Now notice that for §=0,= 0 the p@1.0,(0,0,x,y) degenerates to just p,(0,x). the two dimensional joint density function
of £(g)-and £'(H). Hence from (3.3) we have
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bboooo b
E[Nu(a’ b){Nu(aa b) - 1}]:JJ _[ ”)Cy P06, (ana X, y)dxa’ydeld62 - _[ ”.X >p49(09 X)d)Cd@
aa00 a0
Now since ?T X, p 9(()’ X)dxd6 is EN u(a, b) the result of Theorem 2 follows.
a0

Random Trigonometric Polynomial

To evaluate the variance of the number of real roots of (1.1) in the interval (O, T ) we use Theorem 2 to consider the interval

(6‘ ' I — & '). The variance for the intervals and (8 ' I — & ') are obtained using an application of Jenson’s theorem (10,

-1/2
page 332) or (11, page 125). We chose & '=n which as we will see later, yields the smallest possible error term. First, for

-1/2
any 91 and @ 2 in (8 ' I —& v) such that ‘9 1—9 2‘ > & where &'=n / , we evaluate the joint density function of

the random variable T(Hl),T(Hz), T'(Hl) and T'(Hz). Since for any 6 we have

> cos jO =[sin{(n+1/2)8}/sin(6/2)-1]/2
j=1

and also since for the above choice of 01 and 92, 91+92< 2(7[ —& ') we can show

A(61,6,) = cov{T(8)),T(0,)}= Zn: cos j@ cosj 8,
j=1
[sin{(n+1/2)(8, -60,)}/sin{(0-0,)/ 2} /
| +sin{(n+1/2)(0 1+ 0}/ sin{(0,+6,)/2} -2
=0(l/e)+0(1/¢&") (4.1)

Similarly, we can obtain the following two estimates
n

C(61,0,) = cov{T(0), T(0,)} == jsin jO, cosjb,
Jj=1
= (9/90)1460,0,}=0(n/ e +& > +nle+e™?) (4.2)

and

n
B(6,0,) =cov{T(0), T(0,)} = > jsin j O, sinj6,
j=1

Also in the lemma in (3,page 1405) we obtain

= (9 90)COL0, L =0* | s+n/&* +n* | e+nle*+6) (4.3)

var(T(6,0)) =n/2+O(e™"), var(T' (6,0)) =

n16+0m%evnl e+ )

and

cov{T(O)T(0,)} = O(n/ e'+&'™?)

These together with (4.1)-(4.3) give the covariance matrix for the joint density function T(0)),T(05),T'(01) and T'(0,)as
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2oy a0u00) COL.0) C0r0) |
A0L0y)  ni2+0eTYy 0109 C(02,09)
Z 3 S (4.4)
61,61 6,02 n/6+0(n~/¢") B(61,67)
C(02,0) C(02,09) BOW)  n6+0(? /&)

This covariance matrix for all 7 > 4,0 <01,07< 7 such that @1#67is positive definite. Hence ‘z ‘>0 and, if > is
y

cofactor of the (ij)th element of z , then 233 >0, 244 > 0and 234 = 243 . From (1,page 26) we have
p0102(090: xa J’)

:(4”2)_1‘2 ‘—1/2@([{_ {233x2+z44y ’ +(Z34+243 )"y}/ 2 H (4.3)

Now let = (233/‘2 ‘+)1/2x and's = (244/‘2 ‘+)l/2y. Then from (4.5) we can write

o0 o0
j fos
—00

—0o0

=(4”2)_1‘Z33‘_1244_II I

p01.62(0,0,x, y)dx dy

exp% (q2 152 +2pqs)/2}dqu (4.6)

9,5
—00—00
where p = (Z 34 + 243 )/z(z 33 244 )] /2 and 0< p2 <1. The value of the integral in (4.6) can be obtained by a similar
method to (1, page 211). Let u = (1 —p2)1/2q and v=(1 —pz)l/zs then we have

o0 00
I = Ijexp {(q2 +32 + 2 pgs )/Z}Jq ds
00

00 00
=(1—p2)'1J‘J‘exp¥(u2 +v2 +2puv)/2(1—p2) u dv
00

(- p2y 12 {/2_(”)—15(1_)(2)—1/2&
0

=(- p2 )'1/2 arccos p = ¢ csc ¢ 4.7

where p = 0S¢ . Use has been made of the fact that (see for example, (1, page 27)

00 00
.[J.expé(uz+v2+2puv)/2(1—p2) u dv
00

- ﬂ(l-pz)_1/2{1/2—(ﬂ')_l },JU.(I 2V 2y
0

Therefore from (4.7) by differentiation we can obtain
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o0 o0
I J‘qsexp{f(q2+32+2pqs)/2}iq ds
0—

= -dD/d p) = csc 2g(1 - geot @). (4.8)

(4.8) we can easily show that

o0 o0
J Jqsexp{—(q2+s2+2pqs)/2}dq ds
00—

= csc 2¢{1 + (7 — geot ¢ )}

Which together with (4.8) evaluates the integral in (4.6) as

o O
J J‘|qs|exp{f(q2 +s2 +2pqs)/2}iq ds

= 4cscz¢{1 +(7/2—¢)otg} (4.9)

Now from (4.4) we can show

> =n 240wt ey = (4.10)
44 33 )

and

> 0(;14/5')=Z43 @.11)

Also from (4.10) and (4.11) and with the above choice from (4.9), we can obtain

p:(z34+233 )/2(234233 )]/2:0(1/n8')—>035n—)oo

Therefore ¢ —> 7/ 2 for all sufficiently large n and hence from (4.9), we can see

0 0
J J|qs|exp{—(q2 +32 +2pqs)/2}1q ds

— 00 — 0

—4+0(/ne") (4.12)
Also from (4.1)-(4.4) we can write

> =20 16+ e+

Therefore from this (4.6) and (4.12) the integrand that appears in (3.3) is asymptotically independent of &1 and £7 and since by

the definition of D(e), the area of the integration is (77 — 25')2 e(mr—2&")+ g2 =n?+ O(g +¢'") we have

ANE, m—-&)YNE, —&) 1] =n? 13+ Qnl éme+ng)  (4.13)
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We now denote the mathematical expectation of N* in the interval (0,e). Similar to (2) or (3, page 1407) we apply Jensen’s
theorem on a random integral function of the complex variable z,

n
T(z,w) = Zgj(w)cosjz
J=1
Let N(r) denote the number of real zeros of T(z,w) in z<r. For any integer j from (3, page 1408) we have

PUN(e") > 3ne+ ] < 2/ m)e ™ 2 vexpjli2—n2e' j12) <372 (414

Let n'= [3716"] be the smallest integer greater than or equal to 3n&' then since N(&') < 2nis a non negative integer, from
(4.14) and by dominated convergence, for efficiently large n we have

EN (s = > (2j-1)P(N(e") 2 j)
j=0

n
= > (2j-DPr(N(e") 2 j)+ Y, (2n'=1+2/)Pr(N (') 2 n'+ )

0<j<n' =
n' n

<N @n-1+3+ Y @n-1+1+2))e /2 = wro(')
J=1 J=1

- 0n2e?) (4.15)

The interval (77 — &', 7T) can also be treated in exactly the same way to give the same result. Now we can use delicate result due

to Wilkins (12) which states that EN (0, 7) = n/\2 + O(1). From this and (4.13), (4.15) and since & = &', we obtain

var{N(0,7)} = E{N(0,&") + N(&',7 — &)+ N(z — &', 7)}* — {EN(0, )}
=12 13+0(m2e 2 4n/ e n2e) — {3 + 0(1)}2
On?e2+nlevn?e) (4.16)

Use has been made of the fact that EN(¢',7—¢'")~EN(0,&'")=0(ng'), see (5,page 556) and therefore

E[N(0,)N(&', 7w — £")] = nO(N(0,&")) = O(n?, &'y and also from (4.15), EN2(0,&") ~ EN2(z —&',7) = O(n2, &2 ). Finally

-1/2

from (4.16) and since &'=n , we have the proof of Theorem 3.
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