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ABSTRACT 

The asymptotic estimates of the expected number of real zeros of the polynomial 

 nggg ncos......2coscos 21   where gj(j=1,2,…..n) is a sequence of 

normally distributed random variables is such a number. To achieve the result we first present a 
general formula for the covariance of the number of real zeros of any normal process, e(t), occurring 
in any two disjoint intervals. A formula for the variance of the number of real zeros of e(t) follows 
from this result. 
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Leadbetter’s (1967) works concerning fractional moments which are mainly for the stationary case. To evaluate the variance 

specially, and some other applications generally it is important to consider the covariance of the number of real zeros of )(t  in 

any two disjoint intervals. To this end, let )(t  be a (non-stationary) real valued separable normal process possessing continuous 

sample paths, with probability one, such that for any 21    the joint normal process )('  )('),(),( 2121  and  is 

non singular. Let (a,b) and (c,d) be any disjoint intervals on which )(t  is defined. The following theorem and the formula for 

the mean number of zero crossings (1, page 85) obtain the covariance of N(a,b) and N(c,d). 
 
Theorem 1. For any two disjoint intervals, (a,b) and (c,d) on which the process )(' 1  is defined, we have  
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where for ),,,(.p , c and 212121 yxxxdba    denotes the four dimensional density function of  

).('),('),(),( 2121       

 
A modification of the proof of Theorem 1 will yield the following theorem which, in reality, is only a corollary of Theorem 1.  

Theorem 2: For ),,,(.p 2121 yxxx   defined as in Theorem 1 we have  
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By applying Theorem 2 to the random trigonometric polynomial (1.1) we will be able to find an upper limit for the variance of its 
number of zeros. This becomes possible by using a surprising and nontrivial result due to Wilkins (1991) which reduces the error 
term involved for )2,0( EN  to 0(1). We conclude by proving the following. 

 
Theorem 3. If the coefficients gj(w), j=1,2,…..n in (1.1) be a sequence of independent random variables defined on probability 
space Pr),,(  , each normally distributed with mean zero and variance one, then for all sufficiently large n the variance of the 

number of real zeros of T(θ) satisfies  
 

  )(),0(var 2/3nON    

 
The covariance of the number of crossings 
 
To obtain the result for the covariance, we shall carry through the analysis for the number of upcrossings, Nu. Indeed, the analysis 
for the number of down crossings would be similar and therefore, the result for the total number of crossings will follow. In order 
to find  ),(),( dcNbaNE uu   we require to refine and extend the proof presented by Cramer and Leadbetter (1, page 205). 

However, our proof follow their method and in the following, we highlight the generalization required to obtain our result. Let 
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tends to m as ),(),( dcNbaN uu  with probability one. See also {1,page 287}. We first note that  ),(),( dcNbaNE uu  

is finite and therefore  ),(),( dcNbaN uu  is finite with probability one. Let v and r be the number of upcrossings of )(t in 

(a,b) and (c,d), respectively, and write t1,t2,…..tv and t’1, t’2…t’r for the points of upcrossings of zero by )(t , there can be found 

two sub intervals for each Is,m and Js’m such that )(t  in one is strictly positive and in the other, it is strictly negative. Thus it is 

apparent that Ym will count each of tsts’. That is, vrY m , for all sufficiently large m. On the other hand, if 

0)()( and 0)()( 11   ttkk bbba  then  )(t  must have a zero in ),( and ),( 11  llkk bbaa  and hence vrY m  and 

hence ),(),( dcNbaNY uum  as m , with probability one. Now from (2.1) we can see at once that  
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We write 
k for the random variable     kk

m aa  12  and similarly 1'  for     kk
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For k,l, (z1,z2,x,y) denotes the four dimensional normal density function for k  and 

k' . A simple calculation shows see (6) or (1 

page 207), that if 
1  and 

2 are the fixed interval (a,b) and (c,d), respectively and km and lm are such that 
11 
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mm kk aa  and 

12 
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mm ll bb  for  each m, then all members of the covariance matrix of pm,k,l (z1,z2,x,y) will tend to the corresponding 

members of the covariance matrix of 2,
1
p  (z1,z2,x,y). This co-variance matrix is, indeed, nonsingular. Now let 
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2r and 2 z

m
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mt  then from (2.2) and (2.3) we have  
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in which 21,, m   ),,,( yxrt ),,,(,, yxrtlkPm  for 11  kk aa   and 12  ll bb   . It follows, similar to (1, page 

206), that m  
 

),,0,0(),,22(,, 2121 yxpyxrt mm
m    which together with dominated convergence proves Theorem 1.  

 
The variance of the number of real zeros 
 
It will be convenient to evaluate the EN(N-1) rather than the variance itself since N(N-1) can be expressed much more simply. The 
proof is similar to that established above for covariance, therefore we only point out the generalization required to obtain the 
result. To avoid degeneration of the joint normal density. ),,,(, 2121 yxzzp  , we should omit those zeros in the squares of side 

2-m obtained from equal points in the axes (and therefore to evaluate EN(N-1)). To this and for any g=(g1,g2) lying in the unit 
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square and c>0, let Ame denote the set of all points g in the unit square that for all s belonging to the squares of side 2-m set 

containing g we have  21 ss . Let 
m

 denote the characteristic function of the set m . Finally, similar to the covariance 

case, let 
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for k=0,1,2,….2m-1, where .2)( akaba m
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Similar to (1,page 205) we show that Mme is a non decreasing function of m for any fixed e. It is obvious that Mme is a non 
decreasing function of e for fixed to m, and then by two applications of monotone convergence it would be justified to change the 
order of limits in .limlimlim 0  mm 

 To this end, we note that each term of the sums of mM corresponds to a square 

of side 2-m. For fixed 0 , the typical term is one if both of the followings statements are satisfied; (i) every point s=(s1,s2) in 

the square is such that  21 ss  and (ii) Xk,m=Xl,m=1. When m is increase by one unit, the square is divided into four 

subsquares, in each of which property (i) still holds. Correspondingly, the typical term of sum is divided into four terms, formed 
by replacing m by m+1 and each k or l by 2k and 2l, for ak+1 and al+1. Since Xk,m=Xl,m=1 we must, with probability one, have at 
least one of these four terms equal one. Hence Mme is a non decreasing function of m.  
 
In the following, we show that  ).1(limlim 0  uum NNs  
 

We first note that if the typical term in the sum of mM  is nonzero  it follows that  21 ss , since it is impossible to 

have )(0)( and )(0)( 211   kkkk aaaa  . Therefore, the characteristic function appearing in the formula for  

mM  in (3.1) is one and hence 
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(3.2) is clearly in the form of Ym defined in Section 2 except that the summations in (3.2) cover all the k and l such that lk  . 
Hence from (3.2), we can write 
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Therefore the same pattern as for the covariance case yields   1),(),( baNbaNE uu  
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where )(D  denotes the domain in the two dimensional space with coordinates 21,  such that ba  21,  and   21 . 

Now notice that for 021   the ),,0,0(. 21 yxp   degenerates to just ),0( xp , the two dimensional joint density function 

of )( .and )('  . Hence from (3.3) we have  
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  1),(),( baNbaNE uu =     
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Random Trigonometric Polynomial 
 

To evaluate the variance of the number of real roots of (1.1) in the interval ( ),0  we use Theorem 2 to consider the interval 

 ','   . The variance for the intervals and  ','    are obtained using an application of Jenson’s theorem (10, 

page 332) or (11, page 125). We chose 
2/1'  n  which as we will see later, yields the smallest possible error term. First, for 

any   and 21  in  ','    such that   21 where 
2/1'  n , we evaluate the joint density function of 

the random variable )(' and )('),(),( 2121  TTTT . Since for any   we have  
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These together with (4.1)-(4.3) give the covariance matrix for the joint density function )('  )('),(),( 2121  TandTTT as 
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This covariance matrix for all   2,10,4n  such that 21   is positive definite. Hence 0  and, if ij
is 

cofactor of the (ij)th element of  , then   
34 43

 and 
44

0,
33

0 . From (1,page 26) we have  

),,0,0(. 21 yxp 
 

 

=    (4.5)    2/
433444

2
33

2exp
2/11)24(





 

  xyyx  

Now let q=     .
2/1

44
/s and 

2/1

33
/ yx      Then from (4.5) we can write  

dydxyxpyx  ),,0,0(2.1,  








 

  (4.6)       2/)222(exp,
44

11
33

1)24( dsdqpqssqsq 










   

where     2/1
44332/

4334    and 120  p . The value of the integral in (4.6) can be obtained by a similar 

method to (1, page 211). Let squ 2/1)21( vand 2/1)21(    then we have  

         

0 0

2/)222(exp dsdqpqssqI  
 


      

  dvdupuvvu  

0 0

)21(2/)222(exp1-)2-(1  
 

   

 

(4.7)                    cscarccos1/2-)2-(1

0

2/1)21(1)(2/11/2-)2-(1









  dxx

 
 

where  cos  . Use has been made of the fact that (see for example, (1, page 27) 

  dvdupuvvu  

0 0

)21(2/)222(exp 


   

  





0

2/1)21(1)(2/11/2-)2-(1 dxx

 
 
Therefore from (4.7) by differentiation we can obtain  

 29314                                                Dr. Mishra and Mansingh, Expected number of zeros of a random trigonometric polynomial 



 

(4.8)                       ).cot-(12csc)-(dI)/(d

   

0

2/)222(exp

 

 



  dsdqpqssqqs

 
 
(4.8) we can easily show that  

 

   cot12csc

   

0

2/)222(exp



 



  dsdqpqssqqs

 
 
Which together with (4.8) evaluates the integral in (4.6) as  
 

 

   (4.9)                                                  cot2/12csc4

   2/)222(exp

 









  dsdqpqssqqs

 
 
Now from (4.4) we can show 
 

(4.10)                             
44 33

)'/4(24/5  nOn
 

 
and  
 

(4.11)                             
34 43

)'/4(  nO
 

 
Also from (4.10) and (4.11) and with the above choice from (4.9), we can obtain 
 

        n as 0)'/1(
2/1

34 33
2/

34 33
 nO

 
 

Therefore 2/  for all sufficiently large n and hence from (4.9), we can see  

 

 
(4.12)                                               )'/1(4

   2/)222(exp

nO

dsdqpqssqqs











 

 
 
Also from (4.1)-(4.4) we can write  
 

 2)}1'(6/3{2)}1'(2/{   OnOn
 

 

Therefore from this (4.6) and (4.12) the integrand that appears in (3.3) is asymptotically independent of 2 and 1   and since by 

the definition of D(e), the area of the integration is )'(22)'2(2)'2(   O  we have  

 

   )''/(3/21)','()','(  nnnOnNNE       (4.13) 
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We now denote the mathematical expectation of N2 in the interval (0,e). Similar to (2) or (3, page 1407) we apply Jensen’s 
theorem on a random integral function of the complex variable z,  
 





n

j

jzwjgwzT

1

cos)(),(

 
 

Let N(r) denote the number of real zeros of  T(z,w) in z<r. For any integer j from (3, page 1408) we have  

  2/'3)2/'22/exp(2/')/2('3)'(Pr jjnjjnjnN       (4.14) 

 

Let  '3' nn   be the smallest integer greater than or equal to '3 n  then since nN 2)'(  is a non negative integer, from 

(4.14) and by dominated convergence, for efficiently large n we have  
 






0

))'(Pr()12()'(2

j

jNjEN    

(4.15)                                                           )2'2(

1

)'('2/)211'2(
'

1

3)1'2(

1

)')'(Pr()21'2(

'0

))'(Pr()12(







nO

n

j

nOnjjn
n

j

n

n

j

jnNjn

nj

jNj























 
 

The interval ),'(    can also be treated in exactly the same way to give the same result. Now we can use delicate result due 

to Wilkins (12) which states that ).1(2/),0( OnEN  From this and (4.13), (4.15) and since ,'   we obtain 

 

     

 
(4.16)                                            )'2'/2'2(

2
)1(3/)'2'/2'2(3/2

2),0(2),'()','()',0(),0(var







nnnO

OnnnnOn

ENNNNEN







     

 
Use has been made of the fact that ),'()',0(~)','(  nOENEN   see (5,page 556) and therefore 

)',2())',0(()]','()',0([  nONnONNE  and also from (4.15),  ).2',2(),'(2~)',0(2  nOENEN  Finally 

from (4.16) and since 2/1'  n , we have the proof of Theorem 3.  
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