RESEARCH ARTICLE

ESTIMATION OF RADIATION DOSE TO STAFF FROM 18F-FLUORODEOXYGLUCOSE WHOLE BODY POSITRON EMISSION TOMOGRAPHY/COMPUTED TOMOGRAPHY INVESTIGATIONS

*1Rajeev Kumar, 2Rajendra G. Sonkawade, 1Madhavi Tripathi, 1Anshul Sharma, 1Nishikant A. Damle and 1Chandrasekhar Bal

1Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
2Department of Physics, Shivaji University, Kolhapur, Maharashtra, India

ARTICLE INFO

Article History:
Received 08th January, 2016
Received in revised form 08th February, 2016
Accepted 15th March, 2016
Published online 26th April, 2016

Key words:
Radiation exposure,
18F-FDG, Patient, PET/CT,
Nuclear medicine Physician.

ABSTRACT

Objective: The use of whole body 18F-FDG investigation is now rapidly growing. Unlike in radiology, patients in Nuclear medicine are a source of radiation themselves, since F-18 in 18F-FDG is a Positron emitter. The aim of this study is to measure the amount of radiation dose received by nuclear medicine physicians and staff during injection

Methods: As per clinical protocol, the patients are supposed to have minimum period of 4 hours prior to the study. Whole body 18F-FDG PET/CT scans were performed in 35 patients for various indications. The radiation dose from the patients was measured using the portable radiation survey meter, during injection.

Results: The maximum radiation exposure during FDG injection was 40 mR/hr to the nuclear medicine physician. The minimum radiation exposure during FDG injection was 6.63 mR/hr to the nuclear medicine physician. This was a pediatric patient and the total activity for this patient was 2.2 mCi. The average radiation exposure during FDG injection was 20.91 mR/hr to the nuclear medicine physician. The maximum radiation exposure after water push was 20 mR/hr to the nuclear medicine physician. The minimum radiation exposure after water push was 3.38 mR/hr. The average radiation exposure after water push was 7.87 mR/hr to the nuclear medicine physician.

Conclusion: The exposure rate at surface of Patients is very high of 18F-FDG injected patients. Therefore the person administering the dose to patient should avoid standing very close to the patient. Also the half life of 18F is very less i.e. 109.7 minutes; therefore, exposure rate falls rapidly with the passage of time. So the exposure to staff and Nuclear medicine Physicians are very low

INTRODUCTION

Integrated Positron Emission Tomography (PET)/Computed Tomography (CT) is an imaging technology which provides metabolic information overlayed on the anatomic details in a single investigation (1,2). While PET provides the metabolic characterization, CT provides the cross-sectional details of the body. For metabolic characterization a number of PET radiopharmaceuticals have been developed, till date Fluorine-18 (F-18) Fluorodeoxyglucose (FDG), a glucose analogue is the workhorse agent with widespread application in Oncology, Neurology and Cardiology (3-6).

*Corresponding author: Rajeev Kumar,
Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India.

F-18 is a positron emitter and patients injected with F-18 FDG intravenously become a source of radiation. This poses a challenge to every functioning department in terms of monitoring and controlling the radiation exposure both to the working staff as well as to the patient and his attendants (7-11).

MATERIALS AND METHODS

This study was carried out in the Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi. The department has two PET/CT scanners-Biograph 2 and Biograph mCT having 2 slice and 64 Slice CT respectively from Siemens Limited, Germany. This study was carried out after obtaining written informed consent of the patients. The F-18 FDG was injected by Nuclear Medicine Physicians. During 18F-FDG injection radiation exposure rate to the Nuclear
Medicine Physician was monitored. The time expended by Nuclear medicine Physicians was noted with a stop watch. A portable radiation survey meter was used for this study which is a calibrated RAM GAM-1 portable gamma ray survey meter (Rotem Industries, Israel). The model number of this survey meter is 40029 and its serial number is 1908086. The calibration was done by Nuvia India.

RESULTS

We carried out this study while injecting 35 patients. Three parameters were considered- radiation exposure during injection (mR/hr), Radiation exposure after injection (mR/hr) and Time expended with patients (Seconds).

<table>
<thead>
<tr>
<th>S.No.</th>
<th>During FDG injection</th>
<th>At contact</th>
<th>before injection</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>15</td>
<td>33.7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>16</td>
<td>34.1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>17</td>
<td>40</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>12</td>
<td>55.7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>40</td>
<td>60</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>16.7</td>
<td>69.8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>12</td>
<td>107</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>8.2</td>
<td>30</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>39</td>
<td>79</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>15</td>
<td>103</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>20</td>
<td>94.4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>6.63</td>
<td>89.9</td>
<td>10</td>
<td>Pediatric</td>
</tr>
<tr>
<td>13.</td>
<td>15</td>
<td>91</td>
<td>7</td>
<td>Sick patient</td>
</tr>
<tr>
<td>14.</td>
<td>19.2</td>
<td>45.6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>22.4</td>
<td>81</td>
<td>15</td>
<td>Sick patient</td>
</tr>
<tr>
<td>16.</td>
<td>14.2</td>
<td>46.7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>10.61</td>
<td>44.6</td>
<td>10</td>
<td>Old</td>
</tr>
<tr>
<td>18.</td>
<td>21.8</td>
<td>53.6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>15.5</td>
<td>27.1</td>
<td>5</td>
<td>New resident</td>
</tr>
<tr>
<td>20.</td>
<td>27</td>
<td>46</td>
<td>12</td>
<td>New resident</td>
</tr>
<tr>
<td>21.</td>
<td>34</td>
<td>61</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>31</td>
<td>34.2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>37</td>
<td>63</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>13</td>
<td>58.5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>27</td>
<td>23.9</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>32</td>
<td>87</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>25</td>
<td>41</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>24</td>
<td>66</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>25</td>
<td>21</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>18</td>
<td>40.5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>19.2</td>
<td>53.4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>20.91741</td>
<td>57.47419355</td>
<td>7.70967</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. The details of the exposure rate from the patients using the survey meters

DISCUSSION

The maximum radiation exposure during FDG injection was 40 mR/hr to the nuclear medicine physician. The minimum radiation exposure during FDG injection was 6.63 mR/hr to the nuclear medicine physician. This was a pediatric patient and the total activity for this patient was 2.2 mCi. The average radiation exposure during FDG injection was 20.91 mR/hr to the nuclear medicine physician. The maximum radiation exposure after injection was at contact 107 mR/hr. The average radiation exposure after injection was at 1 meter distance 13.75 mR/hr. The average radiation exposure after injection was at 1 meter distance 10.61 mR/hr. The average radiation exposure after injection was at 1 meter distance 20 seconds, and the average time spent with patient by a nuclear medicine physician after injection was 3 seconds. The average time spent with patient by a nuclear medicine physician before injection was 3 seconds. The average time spent with patient by a nuclear medicine physician before injection was 7.70 seconds. The maximum time spent with patient by a nuclear medicine physician after injection was 40 seconds. This was the maximum time taken by a nuclear medicine physician after FDG injection with patients. This nuclear medicine physician was on training.

This nuclear medicine physician has now decreased his time taken to injection. The minimum time spent with patient by a nuclear medicine physician after injection was 2.47 mR/hr. The average time expended with patient by a nuclear medicine physician after injection was 23.09 seconds. The Exposure rate behind the nuclear medicine physician was 0.33 mR/hr (when nuclear medicine physician was standing in the front of the patient). The Exposure rate behind the nuclear medicine physician was 2.47 mR/hr (when nuclear medicine physician was standing in the front of the patient). Total absorb dose to the nuclear medicine physician was 2.14 mR/hr.

Conclusion

The exposure rate during injection is high so the Nuclear Medicine Physicians administering the dose to patient should...
avoid standing very close to the patient as well as should spend
the minimum time with the injected patients. If they follow the
radiation safety guideline prescribed by the competent
authority (AERB), the radiation dose to the staff and Nuclear
Medicine physicians would be within the permissible limits.

Acknowledgement

The authors thank the staff of the Department of Nuclear
Medicine & Cyclotron facility, AIIMS, New Delhi, India,
Department of Nuclear Medicine & PET facility centre, Army
Hospital Research and Referral, New Delhi, India

REFERENCES

Livingston, M. S. 2nd ed. New York: Interscience Publishers,
Electronic generators. Positron emission tomography:
Molecular imaging and its biological applications; pp. 217–
70.
Mukherjee, B., Sartori, E. Paris: Nuclear energy agency
(NEA)/Organization for economic co-operation and
development (OECD); 2004. A radiological safety and
health physics database for cyclotrons accelerating protons
and deuterons.
Pant, G. S., Senthamizhchelvan S. Initial experience with an 11
MeV self-shielded medical cyclotron on operation and
Phelps, M. E., Mazziotta, J. C., Schelbert, H. R., editors.
Positron emission tomography and autoradiography,
principles and application for the brain and heart. New
Russo, A. A., Ferrari, P., Casale, M., Delia, R. The
radioprotection management of a PET department with a
cyclotron and radiopharmacy laboratory, in accordance with
Saha, G. B. Basics of PET imaging physics, chemistry, and
regulations. 2nd ed. New York: Springer-Verlag LLC;
99–110.
produced radionuclides: guidelines for setting up a facility.
White, D. Frankfort, KY: Conference of radiation control
program directors, Inc.; CRCPD national symposium on
fusion imaging and multimodalities; 2004. PET/CT and
PET cyclotrons: Technical features and regulatory
considerations.
Zanzonico, P., Dauer, L., St Germain, J. Operational radiation
safety for PET-CT, SPECT-CT, and cyclotron facilities.
