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1. INTRODUCTION 
 
Fourier and Laplace Transforms continue to 
are also now useful to financial, economic and biological modelers as these disciplines become more quantitative. Communicati
is all based on Mathematics, be it digital, wired or wireless using Fourier Transform analysis.
solve otherwise intractable physical problems. They work by expressing the equations of a physical system in a new form that 
be solved with simple computation. An example is the Laplace transform, which renders a useful class of differential equations 
trivially solvable, converting them into algebraic ones instead. Another is the very well
functions of Cartesian coordinates to functions of frequencies 
the analysis of all kinds of physical phenomenon. As a link between the various applications of these transforms the authors 
theory of signals and systems, as well as the theory of ordinary and partial differential equations 
Fourier/Laplace transforms to evaluate numerically relevant probabilities in ruin theory as an application to insurance. The 
transform of a function is split in two; the real and imaginary parts and used an inversion formula based on the real parts only, to 
get the original function (Fatima et al., 2002
Historically, transforms have been exploited extensively for solving queuing and related probability models, but only rarely 
numerical inversion attempted (Abate, Joseph 
However there is much scope in extending double transformation to a certain class of generalized functions. Bhosale and 
Choudhary (2002); Khairnar et al. (2012) 
combination of integral transforms in distributional generalized sense namely Fourier
its analyticity theorem (Sharma and Rangari
(Sharma and Rangari, 2014) are proved. Motivated by this, Inversion Theorem for distributional Fourier
presented in this paper.  
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The methods of integral transforms are very efficient to solve and research differential and integral 
equations of mathematical physics. These methods consist in the integration of an equation with some 
weight function of two arguments that often results in the simplification of a given initial problem. 
The main condition for the application of an integral transform is the validity of the inversion theorem 
which allows one to find an unknown function knowing its image. The aim of the present paper is to 
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The planning of this paper is as follows 
 
Testing function spaces are described in section 2, In section 3, we have given the definition of Distributional generalized Fourier-
Laplace transform. We have proved Inversion theorem for distributional Fourier-Laplace transform with two lemmas which are 
given in section 4. In section 5 Uniqueness theorem is given. Lastly conclusions are given by section 6. Notations and terminology 
are as per Zemanian (Zemanian, 1968; Zemanian, 1965). 
 
2. Testing Function Spaces 
 

2.1. The space , ,a bFL    

 
This space is given by  
 

   , , , , , ,

sup

: / , 0 ,

0

k ax l q k k
a b a b k q l t x lqFL E t x t t e D D t x C A k

x


     

 
 

       
    

                       (2.1)                        

                                                 

Where the constants A  and lqC  depend on the testing function . 

 

2.2. The Space , ,a bFL   
 
It is given by 
 

   , , , , , ,

sup

: / , 0 ,

0

k ax l q q q
a b a b k q l t x lkFL E t x t t e D D t x C A q

x


     

 
 

       
    

                       (2.2) 

 

Where, , , 0,1, 2,3,........k l q    and the constants depend on the testing function   . 

 

3. Distributional Generalized Fourier-Laplace transforms ( )FLT  
 

For ,( , ) af t x FL 


  , where ,aFL 



 is the dual space of ,aFL  . It contains all distributions of compact support. The distributional 

Fourier-Laplace transform is a function of ( , )f t x and is defined as  

 

  ( )( , ) ( , ) ( , ), i st ipxFL f t x F s p f t x e    ,                                                     (3.1)       

where, for each fixed t   0 ,t   x   0 x   , 0s  and 0p  , the right hand side of (3.1) has a sense as an 

application of ,( , ) af t x FL 


  to ,
( )

a
i st ipxe FL 
     .   

      
4. Inversion Theorem for Distributional Fourier-Laplace Transform  
 
4.1 Lemma 1 

Statement:-Let     , ,FL f t x F s p and sup A Bf S S  ,where  : , , 0n
AS t t R t A A    and

 : , , 0n
BS x x R x B B    , for 0s  and 1 2Re p   . Let D  and     ( ), , i st ipxs p t x e dtdx 

 


 

                                                                                                     

(4.1.1) 
 
 Then for any fixed real number  and r  with r    ,    , 

       ( ) ( ), , , , , ,
r r

i st ipx i st ipx

r r

f t x e s p dsdw f t x e s p dsdw
 

 

    

   

    , where p iw  , also s and  are fixed with 

1 2s   and 1 2p   . 
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Proof: For  , 0t x  , the result is trivial, so assume that  , 0t x  . If     , ,FL f t x F s p , then  ,F s p is analytic 

for 0s  , 1 2Re p    and  ,s p  is an entire function. Therefore above integrals certainly exist. 

 
In order that right hand side is meaningful, we show that  
 

          
, ,,

r
i st ipx

a b

r

s p e dsdw FL






  

 

  .   

 
Consider,    
 

     , ,
r

i st ipxk l q
a b t x

r

t K x D D e s p dsdw




 

 
   

                            , ,
r

i st ipxk l q
a b t x

r

t K x D D e s p dsdw




 

 

    

                               , ,
r

l q i st ipxk l
a b

r

t K x i s p e s p dsdw




 

 

     

                                , ,
r

l q i st ipxk
a b

r

t K x s p e s p dsdw




 

 

    

                             , ,
r

l qk ist px
a b

r

t K x s p e e s p dsdw




 

 

    

                               , ,
r

l q iw xk ist
a b

r

t K x s p e e s p dsdw






 

 

    

                             , ,
r

l qk ist x iwx
a b

r

t K x s p e e s p e dsdw






  

 

                                       (4.1.1) 

    , ,,
r

i st ipx

a b

r

e s p dsdw FL






 

 

   . 

Partition the path of integration on the straight line from s r   to s r  into m-intervals, each of length 
2r

m
 and from 

p i    to p i    into n-intervals, each of length 
2

n


 . 

Let S   be any point in 
th  interval and p iw    be any point in 

th  interval. 

Suppose,      ,
1 1

2 2
, ,

m n
i s t ip x

m n

r
t x e s p

m n
 

 
 


 

 

 

                                                            (4.1.2) 

To show that  , ,m n t x  converges in , ,a bFL   to 
   ,

r
i st ipx

r

e s p dsdw




 

 
   , we have to show that

     , , ,
r

i st ipx

m n

r

t x e s p dsdw




  

 

   , converges to zero in , ,a bFL   as ,m n   

We write,  
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       , , , ,
r

i st ipxk l q
a b t x m n

r

t K x D D t x e s p dsdw




  

 

 
 

 
 

         ,
1 1

2 2
, ,

rm n
i s t ip x i st ipxk l q

a b t x

r

r
t K x D D e s p e s p dsdw

m n
 



 
  


 

   

   

 
  

 
  

                  , ,
1 1

2 2
1 , 1 ,

rm n
l q l qi s t ip x i st ipxk l q k l q

a b a b

r

r
t K x i s p e s p i t K x s p e s p dsdw

m n
 



   
  


 

   

   

       

           , ,
1 1

2 2
, ,

rm n
i s t ip x i st ipxk l q k l q

a b a b

r

r
t K x s p e s p t K x s p e s p dsdw

m n
 



   
  


 

   

   

   
(4.1.3) 

Since  ,
r

l q

r

s p s p dsdw





 
   is finite by (4.1.1) and    

, 0i st ipxk
a bt K x e   , for sufficiently large values of x and t .  

Given any 0 , we can choose 0x  and 0t  so large that for 0x x  and 0t t  ,  

 

     , ,
3

r
i st ipxk l q

a b

r

t K x s p e s p dsdw





 

 

                                                                                (4.1.4)  

Now consider the first term of (4.1.3), choosing 0m  and 0n  so large that, for 0m m  and 0n n , 

     ,
1 1

2 2 2
,

3

m n
i s t ip xk l q

a b

r
t K x s p e s p

m n
 

   
 

 


 

 

 , for all 0x x  and 0t t  .                     (4.1.5) 

In view of above inequalities (4.1.4), (4.1.5) and (4.1.3),  

       , , , ,
r

i st ipxk l q
a b t x m n

r

t K x D D t x e s p dsdw




   

 

 
  

 
   

 , ,m n t x  converges to 
   ,

r
i st ipx

r

e s p dsdw




 

 
   in , ,a bFL   . 

Hence          ,, , , , , ,
r

i st ipx

m n

r

f t x t x f t x e s p dsdw




  

 

                                             (4.1.6) 

Further left hand side of (4.1.6)  
 

     
1 1

2 2
, , ,

m n
i s t ip x r

f t x e s p
m n

 

 
 




 

 

   

     
1 1

2 2
, , ,

m n
i s t ip x r

f t x e s p
m n

 

 
 




 

 

  

     
1 1

2 2
, , ,

m n
i s t ip x r

f t x e s p
m n

 

 
 




 

 

  

     , , ,
r

i st ipx

r

f t x e s p dsdw




 

 

   . 
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Since      , , ,
i s t ip x

f t x e s p 

 
 

is a continuous function of s and w from (4.1.6). We have 

            , , , , , ,
r r

i st ipx i st ipx

r r

f t x e s p dsdw f t x e s p dsdw
 

 

    

   

    .  

 
4.2. Lemma 2 
 

Let , , , , ,a b c d r and be real numbers with ,c s d a p b    . Let D  then   

 
   

 2

sin sinh1
, ,

t v r x y
t x dtdx A v y

t v x y






 

 

 


   converges in , ,a bFL  to  ,v y as r  ,  . 

 
Proof: To prove  
 

 
 
 

 
 

 2

sin sinh1
, . ,

t v r x y
t x dtdx v y

t v x y


 



 

 

 


  
 

 

We have to show that    , , , 0l q A v y v y   , where    , , up ,k ay l q
l q v yA v y S v e D D A v y 

 
 
Consider,  
 

    , , ,l q A v y v y   

 
 
 

 
 

 2

sin sinh1
, . , 0k ay l q

v y

t v r x y
Sup v e D D t x dtdx v y

t v x y


 



 

 

   
   

   
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Because, 
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 

1
1

1
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

 

 


 

   

   
 

 
1

1

1

sinh sinhx y x
dx dx

x y x

 


 

 


 

   , where 0r  , 0   

 

So,  
 
 

 
 

 2

sin sinh1
, . . ,

t v r x y
v y dtdx v y

t v x y


 



 

 

 


                                                     (4.2.2) 

 
In view of (4.2.1) and (4.2.2), we have to prove 
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 1 1

1 1

t v t t t v

x y x x x y

    

    
 

 
Converges to zero, as in Zemanian (1965) pp.66 Theorem 3.5.1. 
 
Hence the theorem is proved. 
 
Now we prove the Theorem. 
 
4.3. Inversion Theorem  
 

Statement: - Let     , ,FL f t x F s p , for 0s  and 1 2p   . Also, let r and  be a real variables such that

r    ,     .Then in the sense of convergence in D
,      ( )
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, ,
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r
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


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



 

 


 

, where s and

p are fixed real numbers with r s r   and 1 2p   .  

 

Proof: - Let D  . Choose the real numbers c and d such that c s d  and the real numbers a and b such that

1 2a p b     , we have to show that    ( )

2
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, , , ,
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r
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(4.3.1) 
 
Now, the integral on s and p is a continuous function of t and x and therefore the right hand side of (4.3.1) without the limit 

notation can be written as  
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4
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
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    ,   , 0r                                                           (4.3.2) 

 

Since  ,t x is of bounded support and the integrand is a continuous function of , , ,t x s p , the order of integration may be 

changed and we write        ( ) ( )

2 2

0 0
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The order of integration for the repeated integral herein may be changed because again  ,t x is of bounded support and the 

integrand is a continuous function of , , ,t x s p upon doing this we obtain  
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Taking ,r   and using Lemma 2, we get  

 

   , , ,f v y v y  

   ( )
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 



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
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This completes the proof. 
 
5. Uniqueness Theorem 
 

If     , ,FL f t x F s p , for , fs p  and     , ,FL g t x G s p , for , , 0gs p s  and 1 2Re p    . If 

f g   is not empty and if    , ,F s p G s p , for f gs  and f gp  then f g in the sense if equality

 *D I . 

 
Proof 
 

f and g must assign the same value to each D  . By inversion theorem and equating  ,F s p  and  ,G s p  in  

 , ,f g t x  

      2

lim
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, , , 0
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r
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r

r F G s p e dsdp t x
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








 

   


   

Thus, f g  in  *D I .  

 
6. Conclusion  
 
This paper proved Inversion Theorem for Distributional Fourier-Laplace Transform with the help of two lemmas. Also proved 
Uniqueness theorem. 
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