RESEARCH ARTICLE
 PHASE SHIFT CALCULATION FOR THE NUCLEI $\left({ }^{16} \mathbf{O},{ }^{17} \mathrm{~F}\right) \&\left({ }^{40} \mathrm{Ca},{ }^{41} \mathrm{Sc}\right)$ NEAR \& FAR FROM STABILITY LINE

*Acharya, A. and Nayak, R. L.
Department of Physics, VSS University of Technology, Burla, Odisha, India-768018

ARTICLE INFO

Article History:

Received $23^{\text {rd }}$ March, 2016
Received in revised form
$10^{\text {th }}$ April, 2016
Accepted $17^{\text {th }}$ May, 2016
Published online $15^{\text {th }}$ June, 2016

Key words:

Special points and weights,
Gaussian quadrature method,
Stripping reactions, Drip line nuclei.

Abstract

The phase shift calculations for the mirror nuclei by applying Gaussian 15 point quadrature method are done. The form factor, binding energy, normalization constants are the inputs in this case. The singularities are overcome by suitable techniques.

Copyright®2016, Acharya and Nayak. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Acharya, A. and Nayak, R. L. 2016. "Phase shift calculation for the nuclei $\left({ }^{16} \mathrm{O},{ }^{17} \mathrm{~F}\right) \&\left({ }^{40} \mathrm{Ca},{ }^{41} \mathrm{Sc}\right)$ near \& far from stability line", International Journal of Current Research, 8, (06), 32393-32395.

INTRODUCTION

The calculation of phase shifts by the scattering theory was one of the main method for a long time. Based on the Darboux transforms, inverse scattering methods are successfully applied to determine the nucleon nucleon potential for uncoupled partial waves from the corresponding phase shifts whose analyses are quite uncertain (Leeb and Leidinger, 1992). Kim and Zubarev used the effective linear two-body method for many body problem in atomic and nuclear physics to convrt to two-body one by applying variational ones to find out the phase shift values (Kim and Zubarev, 2000). Nuclei having very different N / Z ratio compared to stable nuclei with the same A, large radii cut-off, high momentum distribution are generally known as drip-line nuclei. The magic nuclei having $\mathrm{N}=\mathrm{Z}$ appear near the $\boldsymbol{\beta}$-stability line for which $v(r) \sim r$ curve is symmetric. For proton drip-line nuclei, $v(r) \sim r$ is deeper for n than p-halo in the medium heavy nuclei (Wang et al., 2013). By choosing Wood-Saxon potential it is observed that nuclei with $l=2$ higher orbital angular momentum lying deep are more stable compared to the $l=0$ state for mass

[^0]range $A \sim 20$ 40. Considering the Schrodinger's equation in radial form for a finite well potential in the mass range $A \sim 200220$ nuclei having shell structure level ${ }^{2} \mathrm{~s}_{1 / 2}, 1 \mathrm{~d}_{3 / 2}$, $1 \mathrm{~d}_{5 / 2}$ are seen to be strongly bound and nuclei having shell structure $1 \mathrm{~d}_{3 / 2}, 2 \mathrm{~s}_{1 / 2}, 1 \mathrm{~d}_{5 / 2}$ are stable sd-shell nuclei in the mass range $A \sim 2040$ (Nayak et al., 2009). The nuclei such $\mathrm{as}_{12}^{40} \mathrm{Mg}_{28},{ }_{13}^{42} \mathrm{Al}_{29},{ }_{14}^{44} \mathrm{Si}_{30}$ and their isotopes are the recently found neutron drip-line nuclei. Since $N>Z$ they occur near the β^{-}-stability zone. More the coulombic force between the 1 n , $2 \mathrm{n} \ldots$ and the core these unstable nuclei can come closer to the β^{-}-stability line and become more sable. The proton drip-line nuclei which are against the proton emission are approximately known up to Pb region. Proton drip-line nuclei lie much closer to the $\boldsymbol{\beta}$-stability line than the neutron drip-line due to the higher coulombic barrier (Rodberg and Thaler)

Phase-shift calculation

Schrodinger's equation for S-wave is written as
$\frac{d^{2} \Psi}{d x^{2}}+\frac{2 \mu}{2}(E \quad V) \Psi=01$
In radial form
$\frac{d^{2} U}{d r^{2}}+\frac{2 \mu}{2}(E \quad V) \mathrm{U}=$ 02
$\mathrm{U}=\mathrm{rR}(\mathrm{r})$
$R(r)$ being the radial spatial wave function
The partial wave equation of Schrodinger equation (Rodberg and Thaler)
$\frac{d^{2} U_{l}(r)}{d r^{2}}+\left[\begin{array}{lll}k^{2} & U(r) & \frac{l(l+1)}{r^{2}}\end{array}\right] U_{l}(r)=03$
$\Psi_{l m}(r) \equiv \frac{U_{l}(r)}{r} Y_{l m}(\theta, \quad)$
$k^{2}=\left(\frac{2 m E}{2}\right)$
$U(r)=\left(\frac{2 m}{2}\right) V(r)$ 05

For $r>R$
$F_{l}(k r)=k r j_{e}(k r)=\left(\frac{1}{2} \pi k r\right)^{\frac{1}{2}} J_{l+\frac{1}{2}}(k r) \quad 06$
and
$G_{l}(k r)=\left(\frac{1}{2} \pi k r\right)^{\frac{1}{2}}(1)^{l} J_{-l+\frac{1}{2}}(k r)$
$U_{l}(r)=A F_{l}(k r)+B G_{l}(k r)$
A, B are complex but this ratio A / B is real near origin
$F_{l}(k r) \underset{k r \ll 1}{\rightarrow} \frac{(k r)^{l+1}}{1.3 .5 \ldots . .(2 l+1)}$
And $G_{l}(k r) \underset{k r \ll 1}{\rightarrow} \frac{1.3 .5 \ldots \ldots(2 l-1)}{(k r)^{l}}$
At large distances for $\mathrm{kr} \gg 1$
$F_{l}(k r) \rightarrow \sin \left(\begin{array}{ll}k r & \frac{1}{2} \pi l\end{array}\right)$
$G_{l}(k r) \rightarrow \cos \left(\begin{array}{ll}k r & \left.\frac{1}{2 \pi l}\right)\end{array}\right.$
$r_{t o t}=\int_{0}^{\infty} \frac{4 \pi}{k^{2}} \sin ^{2} \delta_{l} d \Omega$
$\left\{\frac{d^{2}}{d r^{2}} \quad \frac{l(l+1)}{r^{2}}+\frac{2 m}{2}\left(s_{n l j} \quad V(r) \quad V_{l s}(r)\right)\right\} R_{n l j}(r)=0$

Centrifugal potential:
$\frac{{ }^{2} l(l+1)}{2 m r^{2}}$
Wood-Saxon Potential:
$\frac{V_{0}}{1+\exp \left(\frac{r}{a}\right)}$
The barrier height of the potentials (centrifugal + WoodSaxon) $\boldsymbol{\alpha} \frac{l(l+1)}{r^{2}}$
$r \sim r_{0} A^{1 / 3}$
The integration in equation (13) can be divided into three intervals (Anjana Acharya, 2007)
(i) From 0 to \sqrt{E}
(ii) From \sqrt{E} to $\sqrt{E+2 \varepsilon_{B}}$
(iii) From $\sqrt{E+2 \varepsilon_{B}}$ to ∞

Within these intervals six, three and six mesh points (altogether 15 points) are chosen. These are known as Gauss Legendre points mapped onto the respective intervals. In the $2^{\text {nd }}$ and $3^{\text {rd }}$ intervals the Gauss-Legendre points t, which are three and six in number in the two cases are mapped onto the respective intervals by the transformation (Jansen et al., 2011)
$U_{k}=\left[(t+1) \varepsilon_{B}+E\right]^{\frac{1}{2}} 15$ and $U_{k}=\frac{2}{(1-t)}\left(E+2 \varepsilon_{B}\right)^{1 / 2}$
Thus requiring the on-shell point $U_{k}=Q_{k}$ to be one of the 15 mesh points in the U_{k} integration. The mesh points in the $2^{\text {nd }}$ and $3^{\text {rd }}$ intervals are different for different partitions, $\mathrm{k}=1,2,3$. But in all cases the $8^{\text {th }}$ mesh point is the corresponding on-shell momentum.

The expression for the phase shift is given as (Acharya et al., 2015)
$\delta=-\frac{\pi}{2} \mathrm{k} \lambda \frac{v^{2}(k)}{(1+\operatorname{Re} I)}$
$\operatorname{Re} \mathrm{I}=\lambda x \int P \frac{d Q Q^{2} v^{2}(k)}{Q^{2}-k^{\wedge} 2}$
' x ' stands for last neutron or proton with specific 1 and j values.

Table 1. Values of the parameters to calculate phase shift

Reaction Type	State ($i_{\text {ij }}$)	${ }_{1 j}$ in MeV	$\alpha^{2} \mathrm{in} \mathrm{fm}^{-2}$	β in fm ${ }^{-1}$	in fm^{-7}
${ }^{16} \mathrm{O}+\mathrm{n}={ }^{17} \mathrm{O}$	5^{+}	-4.146	0.1878	1.7	917
	$\overline{2}_{1}{ }^{+}$	-3.27	0.1481	1.7	4.1378
${ }^{16} \mathrm{O}+\mathrm{p}={ }^{17} \mathrm{~F}$	$\overline{2}^{+}$	-0.596	0.027	1.7	1109.34
	$\overline{2}{ }^{+}$	-0.10	0.0045	1.7	9.85
${ }^{40} \mathrm{Ca}+\mathrm{n}={ }^{41} \mathrm{Ca}$	${ }_{2}{ }^{+}$	-6.41	0.3010	0.548	93
${ }^{40} \mathbf{C a}+\mathbf{p}={ }^{41} \mathrm{Sc}$	$\overline{2}^{\frac{3}{2}}{ }^{+}$	-0.13	0.00611	0.548	0.183

Fig. 1. The phase shift versus momentum weights for ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{n})$ reaction

Fig 2. The phase shift versus momentum weights for ${ }^{16} \mathrm{O}(\mathrm{d}, \mathrm{p})$ reaction

Fig 3. The phase shift versus momentum weights for ${ }^{40} \mathbf{C a}(d, n)$ reaction

RESULTS AND DISCUSSION

The cross-section values is larger for those reactions where channel spin is conserved where the spin of the $\mathrm{i}^{\text {th }}$ particle coupled to the $\mathrm{i}^{\text {th }}$ bound pair in the initial channel is same as the spin of the $i^{\text {th }}$ particle coupled to the $j^{\text {th }}$ pair in the product channel. So to study the isospin study breaking for heavy halo nuclei is our future plan. These lead to the astrophysical interest. The position of a body (moon or planet) elongation 90° or 270° i.e. body-earth-sun angle is 90°. In signal processing, quadrature amplitude modulation (QAM), a modulation method of using both carrier and modulated wave is necessary. The RMS value for different nuclei gradually increases with respect to the atomic mass no. both for the nuclei near the β^{+}and β^{-}stability line in the mass region 0 220 are calculated, the $\mathrm{N} \sim \mathrm{Z}$ graph for the different nuclei near and far from the $\boldsymbol{\beta}$-stability line are shown in ref (Nayak et al., 2009) (red line $-\beta^{-}$stability nuclei, blue line- β^{+}stability nuclei and black line- $\boldsymbol{\beta}$ stability nuclei). By designing a specific model to study the internal structure of these halo nuclei near and far from the stability line has wide applications in various fields. In Fig 1 we see that the phase shift increases from -0.35 and attains peak at -0.46 when the momentum weights varies from 0 to 2.5 . Then the delta-values tend towards zero with respect to p -weights which depend on the $1, \mathrm{j}$ states. The other graphs can be calibrated similarly. Our future plan is to find out the cross-section for different isotopes of oxygen and calcium when coulomb interaction is included.

REFERENCES

Anjana Acharya Indian Journal of Physics, 81(8) 803-817 2007.

International Journal of Scientific and Technology Research, volume 4, issue 12, December, 2015, ISSN 2277-8616
Introduction to the quantum theory of scattering by L. S. Rodberg and R. M. Thaler Academic press, New York and London
Kim Y.E. \& A.L.Zubarev 2000. 'Effective linear two-body method for many bodyproblems in atomic and nuclear physics' Few-body systems, Suppl. 12, 7-14.
Leeb H. and D. Leidinger 1992. 'Uncertainities of phase shift analysis and the nucleon nucleon interaction' Few-body systems, Suppl. 6, 117-127.
Nuclei Near and Far From β-Stability Line" by R. L. Nayak, T. Sahoo, A. Acharya DOI: 10.15415/jnp.2015.2, 2009
Spectroscopic calculations of cluster nuclei above double shell closures with a new local potential by S. M. Wang, J. C. Pei and F.R. Xu, phys rev. C87, 01431, 12013.
Toward open-shell nuclei with coupled-cluster theory by G. R. Jansen, M. Hjorth- Jensen, G. Hagen and T. Papen brock, Phys Rev. C83, 054306, 2011.
Unitary pole approximation for 16 O (S1/2 state) and 40 Ca (P3/2 state) when coulomb interaction is included by A. Acharya, R. L. Nayak \& T. Sahoo

[^0]: *Corresponding author: Acharya, A.
 Department of Physics, VSS University of Technology, Burla, Odisha, India-768018

