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This studypresents CFD 3-D winglets analysis on a civil aircraft wing ofNACA23016airfoil for root wing
section, NACA 23014airfoil for mean wing section and NACA 23012airfoil for tip wing section. These
airfoils were considered as 4 m chord length at root section, 2.8 m chord length at mean section and 1.6 m
chord length at tip wing section at which is added the winglet with the same profile at tip section with 45
degree cant angle. A CFD study to evaluatethe acrodynamics characteristics of lift coefficient CL, drag
coefficient CD and lift to drag ratio, L/D lift, pathlines and pressure contours is presented.All wings are
simulated at a subsonic Mach number of (0.2) and ambient conditions pressure of (1 bar) and temperature of
(150 C) at sea level. The wing with winglet blended connection has approximately the lift to drag ratio,
CL/CD range varies from (11- 12.4)% with different air stream angles more than wing without winglet. The
wing model with sharp edge winglet has lift to drag ratio, CL/CD range varies from (6.4- 8.2) % with
different air stream angles less than the wing without winglet. CFD results proved that the wing with
blended winglet is more efficient than the wing with sharp edge.
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INTRODUCTION

Tip vortices are major problem in aircraft conditions, which
increase drag on the aircraft wing. Drag is a phenomenon needs
to solved, specially induced drag. To avoid this phenomenon of
drag, tip fens and winglet is appeared to decrease fuel
consumption, improve aircraft performance, caring in air traffic
control and decrease tip vortices. Winglet is mechanism attached
to the wing tip. Winglet use to decrease fuel consumption,
improves aircraft performance, and decrease tip vortices.
Kubrynski, (2013) presented optimization approach for a multi-
shape design which actually resulted in elevated sailplanes
performance with blended winglets. Minella, et al. (2010)
investigated different configurations of winglets by using 3-D
aerodynamic analysis. It found that blended winglet has better
performance than split winglet shape. Nikola ef al. (2014) studied
the effects of winglets on aircraft performance. Five
configurations of winglets investigated numerically to evaluate
the aerodynamic performance using multi-objective optimization
software techniques to obtain one of the optimal configurations
of winglet that s decreasing drag and increasing lift. Figure 1
shows Aircraft wing geometry considered in present paper a 50-
passenger (CRJ — 100) aircraft wing with sharp edge and blended
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wing let, wing of NACA23016airfoil for root wing section,
NACA 23014airfoil for mean wing section and NACA 23012 air
foil for tip wing section. These airfoils were considered as 4 m
chord length at root section, 2.8 m chord length at mean section
and 1.6 m chord length at tip section.

Governing Equations

Aircraft wing model is subjected to air flow considered as
compressible viscous flow in 3-D. Air flow velocity and density
are related in the continuity equation associated with Navier-
Stokes equations. Thesedifferential forms of governing equations
for compressible flow are presented here. Spalart-Allmaras
model is chosen from turbulence modelled. Here the FLUENT®
Manuel (Versteeg, 1995) & (FLUENT Documentation, 2005) is
presented in differential form of the model governing equations.

"‘ﬁ 7 r j—
e Continuity equation: 7 * *" (s¥7) =0
e Momentum equation: 7. (o) = =Fp+ 7. + F
e Energy equation:

E-“;I—E) + V(o7 (0F + p)) = Vikyyy VT~ Za.j, + @+ 5,

CFD Verification

A numerical model for rectangular wing with NACA
653218geometry is generated with its mesh by Ansys (15) and
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Figure 1-a. Aircraft wing with sharp edge winglet 45 cant angle (Abdelghany et al., 2016)
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Figure 1. b. Aircraft wing with blended winglet 45 cant angle (Abdelghany et al., 2016).
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Figure 2. Wing control volume mesh
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Figure 3. lift coefficient ofair stream angle,a=12degreeVS number of grid
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Figure 4. The distribution of the Coefficient of lift againstair stream angle(a), for different wing shapes
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Figure 5. The distribution of CL/CD ratio againstangle attack(a)
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Figure 6 b. Wing with blended winglet pressure contours
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Figure 7a. Aircraft semi-span wing with sharp edge winglet pressure contour of a
CRJ - 100 with cant angle 45 degree isometric view at Air stream angle, a=12 degree.
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Figure 7b. Aircraft semi-span wing with blended winglet pressure contour of a CRJ - 100 with cant angle 45 degree isometric view at
Air stream angle, =12 degree

subjected to ambient conditions of 1-bar Pressure and
temperature of 288-K at subsonic Mach No of 0.2then solved
by FLUENT software using finite volume method. Results
obtained are aerodynamics characteristics like lift, Drag at
different air stream angle (a), also Path lines on the wing.

Geometry and Grids

Atapered wing with NACA23016airfoil for root wing section,
NACA23014 airfoil for mean wing section and, NACA23012
airfoil for tip wing section of A CRJ - 100 aircraft wing are
considered. The airfoils are drawn using Gambit with a chord
length of 4 m at root section, a chord length of 2.8 m at mean
section and a chord length of 1.6 m at tip section.

The wing has a span of 31m. In order to achieve lift and drag
on wing, GAMBIT® software is generated mesh, which close
to the wing volume should be small enough to satisfy
boundary conditions for far field (Abdelghany et al., 2016).
Tetrahedral unstructured mesh used for complex shape of
winglet. Near to the wing wall size of grid must be small
enough to reach to the good results of lift and drag. Figure 2
shows also the grid volumes important used to reduce time of
solution and owed memory.

Grid independency check

In general, a numerical result becomes exact by increasing
number of cells.
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When the computations running, aimed to save time, the
minimum cells number demonstrate grid independency check
for the calculations presented. In the present study grid sizes of
0.5%10° to 2*10° by step of 0.5%10° are used and the C; The lift
coefficient at the air stream angle is monitored as shown in
figure 3. It is clear for that figure that to be considered. These
cases for a grid with around 1,500,000 cells as a reasonable
grid size to produce grid independent solution.

RESULTS AND DISCUSSION

In this section the results obtained from CFD calculation for
lift coefficient, drag coefficient, path lines and pressure
contours around wing at different air stream angles are
presented.
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Aerodynamic Analysis

Figure 4shows lift coefficient, increase with increase in air
stream angle, a. This figure also shows that ,wing with blended
winglet has the highest lift coefficient, Cp, ranges from 13.6%
to 14.5% with air stream angle comparing with the wing
without winglet. The wing with sharp edge winglet gives the
next highest lift coefficient, C;, ranges from 10% to 11.6%
with air stream angle comparing with the wing without
winglet. Figure Sshown below; indicates that the wing with
blended winglet has maximum lift to drag ratio; C /Cp by
about 11% to 12.4% with different air stream angles
comparing with the wing without winglet. Trends is followed
by wing with sharp edge winglet, which is the next highest lift
to drag ratio where C;/Cp range from 6.4% to 8.2 % with
different air stream angles comparing with the wing without
winglet.

Near wing tip

Figure 8a. Wing with sharp edge winglet pathlines at air stream angle, 0=12 degree
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Figure 8b. Wing with blended wingletspathlines in case at air stream angle 12 degree
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Pressure Contours

Figure 6shows upper static pressure contours for wing with
winglet at cant angle, 45 degree. At air stream angle 0 degree,
the minimum static pressure is located at the upper surface. At
air stream angle, a=12 degree, the high intensity blue area are
located on the upper surface. The figure also shows that the
contours of the most of the total force are directed backward as
drag. For all air stream angles, the minimum static pressure
zones are located at mid of the wing. The figure also shows
that minimum pressure value is higher than the minimum
pressure value at the root. The r pressure decreases from root
to tip, then the pressure increases to reach the atmosphere
pressure, so as to reducing vortices at wing tip.

Effects of different winglets with cant angle 45°

Figure 7 show pressure contours on sides of the wing surface
with blended winglets, for different angles of attack. These
wings with different winglets tested at a subsonic Mach
number of 0.2 and ambient conditions pressure of (1 bar) and
temperature of (288 K) at sea level.

Pathlines

It is well-kwon that pressure difference between both sides of
wing surfaces of makes vortices. When pressure difference
increase with increasing of air stream angle then wing vortex is
increasing. The wing with blended winglet and wing with
sharp edge actually reduce vortices at the wingtip as expected.
The rotational motion can be visualized more easily by
presented the path lines. The path lines indicate that fluid is
moves from lower to upper surface thus creating vortices.
.Figure 8shows path lines over the wing with winglet at
maximum air stream angle of 12°. Path lines are zoomed in at
the wingtip where trailing vortices occurs. Due to the small e
in pressure difference between both sides of wing surfaces tip
vortices are very small

Conclusion

Winglet designs considerably yield improvement of the aircraft
performance and fuel consumption reduction. Effects of
blended winglet and sharp edge winglet were investigated
using CFD technique. In addition, to comparisons between the
blended winglet, sharp edge winglet and the case without
winglet. Each case was compared to cases without winglet,
with the sharp edge winglet and blended winglet. The wing
with winglet blended connection has lift to drag ratio, CL/CD
range varies from (11- 12.4) % with different air stream angles
more than wing without winglet. The wing model with sharp
edge winglet has lift to drag ratio, CL/CD range varies from
(6.4- 8.2) % with different air stream angles less than the wing
without winglet at air stream angle o= 6 degree.\

Nomenclature

:Wing span

:Chord length

:Lift coefficient
:Drag coefficient
:Total fluid energy
:Enthalpy

‘Time

:Air stream angle
‘Temperature

:Mach number
:Wing area

:Pressure value
:Reynolds number, Re=UC /v
:Kinematic viscosity
:Source term
:Density

:Air stream angle
:External body forces
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