

PARALLELIZATION OF BACKPROPAGATION ALGORITHM AND BENCHMARKING

*,1Ishan Borker, 2Ruchika,

1Department of Computer Science and Engineering, Veltech Dr.

2Centre for Development in Advanced Computing (C

ARTICLE INFO ABSTRACT

Back propagation Algorithm is a technique to train Artificial Neural Networks to calculate the
gradient of the
weights to
propagation
networks. Open
used to produce more efficient neural networks. This technique executes the algorithm in parallel.
This paper summarizes the basic Back
the serial code.
like code profiling, code optimization are being used. Also, the need to perform benchmarking is
required to check the relative performance of the program on different system architectures.

Copyright©2017, Ishan Borker et al. This is an open access article distributed under the Creative Commons Att
distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Machine learning is the domain in computer science that is
used to design complex algorithms and models. It gives the
chance to the computers to learn without programming
explicitly. Applications for machine learning include
bioinformatics, classifying DNA sequences,
game playing, internet fraud detection, marketing
natural language processing, robotlocomotion
handwriting recognition. Artificial Neural Network is the
of algorithm in machine learning. It is a computing system
made up of a number of simple, highly interconnected
processing elements, which process information by their
dynamic state response to external inputs (Khatri
ANN is composed of multiple nodes. The neurons are
connected by links and they interact with each other. The result
is then passed to the other neurons. The output at each node is
called its activation or node value. Each link is associated
with weight (https://www.tutorialspoint.com/artificial_
intelligence/artificial_intelligence_neural_networks.htm
propagation is a method used with gradient
calculates the gradient of a loss function with respect to all the
weights in the network.

*Corresponding author: Ishan Borker,
Department of Computer Science and Engineering, Veltech
Dr. RR and Dr. SR University, Chennai, Tamil Nadu India

ISSN: 0975-833X

Article History:

Received 20th March, 2017
Received in revised form
18th April, 2017
Accepted 10th May, 2017
Published online 20th June, 2017

Citation: Ishan Borker, Ruchika, Vinoth Kumar, R. and Aditya Kumar Sinha
International Journal of Current Research, 9, (06), 51818

Key words:

Artificial Neural Networks (ANN),
Backpropagation algorithm (BPA),
Open MP, Fork-join.

RESEARCH ARTICLE

PARALLELIZATION OF BACKPROPAGATION ALGORITHM AND BENCHMARKING

Ruchika, 1Vinoth Kumar, R. and 2Aditya Kumar Sinha

Department of Computer Science and Engineering, Veltech Dr. RR and Dr. SR University,
Tamil Nadu, India

Centre for Development in Advanced Computing (C-DAC), Pune, India

ABSTRACT

propagation Algorithm is a technique to train Artificial Neural Networks to calculate the
gradient of the error function with respect to all the weights. This gradient is then used to update the
weights to reduce the error function (https://mattmazur.com/2015/03/17/a
propagation-example/). Back propagation Algorithm is a supervised learning approach in neural
networks. Open MP is a model used for parallel programming to improve efficiency
used to produce more efficient neural networks. This technique executes the algorithm in parallel.
This paper summarizes the basic Back propagation Algorithm and measures the time of execution of
the serial code. It is then compared with the time of execution of parallel code. Also various methods
like code profiling, code optimization are being used. Also, the need to perform benchmarking is
required to check the relative performance of the program on different system architectures.

is an open access article distributed under the Creative Commons Attribution License, which
distribution, and reproduction in any medium, provided the original work is properly cited.

Machine learning is the domain in computer science that is
used to design complex algorithms and models. It gives the

without programming
Applications for machine learning include

, computer vision,
marketing, economics,

robotlocomotion, speech and
Artificial Neural Network is the type

e learning. It is a computing system
of simple, highly interconnected

processing elements, which process information by their
Khatri et al., 2015).

ANN is composed of multiple nodes. The neurons are
connected by links and they interact with each other. The result

The output at each node is
Each link is associated

tps://www.tutorialspoint.com/artificial_
intelligence/artificial_intelligence_neural_networks.htm). Back

with gradient descent. It
with respect to all the

Department of Computer Science and Engineering, Veltech
Dr. RR and Dr. SR University, Chennai, Tamil Nadu India.

The gradient is fed to the optimization method which
the weights to minimize the loss function.
requires the desired output for each
calculate the loss function gradient
2015/03/17/a-step-by-step backpropagation
MP is a technique used to write a
provides the platform independent set of compiler pragmas,
directives, function calls and environment variables to use the
parallelism (Yadav et al., 2010
number of threads as required (
We use Open MP for improving the back
algorithm to achieve better efficiency with an
of threads. Also, the speedup of the program increases with the
increase in the number of threads. Parallelism can be done in
BP by node parallelism. Here weight updating takes place by
evaluating each node in a single layer in parallel
2003).

MATERIALS AND METHODS

Figure 3 represents the proposed architecture of the paper. It
consists of 5 sections:

1. Input the out brain click data
required for execution of BPA.

2. Serial computation of BP algorithm:
serial manner is being generated and put into execution.

International Journal of Current Research
Vol. 9, Issue, 06, pp.51818-51822, June, 2017

Ishan Borker, Ruchika, Vinoth Kumar, R. and Aditya Kumar Sinha, 2017. “Parallelization of Backpropagation Algorithm and Benchmarking
51818-51822.

 Available online at http://www.journalcra.com
 z

PARALLELIZATION OF BACKPROPAGATION ALGORITHM AND BENCHMARKING

Aditya Kumar Sinha

SR University, Chennai,

DAC), Pune, India

propagation Algorithm is a technique to train Artificial Neural Networks to calculate the
error function with respect to all the weights. This gradient is then used to update the

https://mattmazur.com/2015/03/17/a-step-by-step back
propagation Algorithm is a supervised learning approach in neural

MP is a model used for parallel programming to improve efficiency and time. It is
used to produce more efficient neural networks. This technique executes the algorithm in parallel.

propagation Algorithm and measures the time of execution of
e time of execution of parallel code. Also various methods

like code profiling, code optimization are being used. Also, the need to perform benchmarking is
required to check the relative performance of the program on different system architectures.

ribution License, which permits unrestricted use,

The gradient is fed to the optimization method which updates
the weights to minimize the loss function. Back propagation

output for each input value in order to
gradient (https://mattmazur.com/

step backpropagation-example/). Open
MP is a technique used to write amulti-threaded application. It
provides the platform independent set of compiler pragmas,
directives, function calls and environment variables to use the

., 2010). Master thread spawns the
(Schuessler and Loyola, 2011).

MP for improving the back propagation
algorithm to achieve better efficiency with an available number

the speedup of the program increases with the
increase in the number of threads. Parallelism can be done in

arallelism. Here weight updating takes place by
evaluating each node in a single layer in parallel (Pethick et al.,

MATERIALS AND METHODS

Figure 3 represents the proposed architecture of the paper. It

brain click data set: It is the input dataset

2. Serial computation of BP algorithm: Here program code in
serial manner is being generated and put into execution.

 INTERNATIONAL JOURNAL
 OF CURRENT RESEARCH

Parallelization of Backpropagation Algorithm and Benchmarking”,

3. Output in the form of updating the weights: It gives the
desired result by updating the weights in the neural network.

4. Various other techniques like Profiling of the code using flat
profile and call graph etc, Optimization of the code from o2 to
o4 levels and Parallelization of the code using Open MP is
being carried out.

5. Benchmarking: Here the testing of the parallel, as well as
serial code, is done on different system architectures like Intel
64-bit i5 processor and Intel Xeon Phi processor with an
increase in the number of threads. It is done to evaluate the
performance with respect to CPU time, memory, I/O
communication.

Figure 1. Simple ANN
(athttps://www.tutorialspoint.com/artificial_intelligence/artificial_

intelligence_neural_networks.htm)

Figure 2. Fork-join model of Open MP

Figure 3. Architectural Diagram

Figure 4 represents the workflow of the paper. The stages
performed are following: Input dataset of different sizes.
Implement the Serial code of BP algorithm. Evaluate the code
with respect to CPU time, memory usage, and I/O
communication. Then perform code profiling using techniques
like flat profile, call graph. Also, perform code optimization
from o2 to o4 levels. Finally perform the benchmarking on
the64-bit i5 processor, Intel Xeon Phi processor.

Figure 4. Workflow

Implementation

The out brain click dataset has been used as input for the BP
algorithm. The dataset is taken for different sizes (24MB,
96MB, 250MB, 500MB, 750MB and 1GB).The attributes of
the dataset are display_id, clicked, input, input weight, and
output weight. Apply BP algorithm on this dataset. The result
can be calculated based on updating the weights. Then we
calculate the time of execution of serial code, memory usage
and I/O communication. After this task, we perform profiling
and optimization of the code. After this we use Open MP for
parallelizing the code and then calculate the time of execution
of serial code, memory usage and I/O communication and
compare it with that to the serial code. Finally benchmarking
of both the serial and parallel code is done on Intel 64-bit
processor and Intel Xeon processor.

RESULTS ANALYSIS

Table I. Comparison of serial and parallel code with respect to
CPU Time (in seconds) (Intel 64-bit processor)

Size of Dataset Serial code
 Parallel code

 4 threads 8 threads
24MB 20.07 19.37 19.36
96MB 81.54 77.73 76.83
250MB 219.50 212.09 210.44
500MB 442.81 404.22 400.3
750MB 642.76 572.63 567.70
1GB 887.84 801.43 801.66

51819 Ishan Borker et al. Parallelization of Backpropagation algorithm and benchmarking

Table II. Comparison of serial and parallel code with respect to Memory usage (in bytes) (Intel 64-bit processor)

Size of Dataset Serial code
 Parallel code

 4 threads 8 threads
24MB 12191 12122 12232
96MB 12324 12384 12430
250MB 7045 6146 6187
500MB 6985 6224 6279
750MB 9495 9521 9565
1GB 9678 9716 9757

III. Serial Code

Table III and IV. Comparison of serial and parallel code with respect to I/O communication (Intel 64-bit processor)

Size of Dataset

 Average CPU (%)

%
user

%
nice

%
system

%
iowait

%
Idle

24MB 19.59 0.05 11.91 1.23 67.22
96MB 19.38 0.05 11.75 1.20 67.62
250MB 19.45 0.08 11.03 1.89 67.55
500MB 18.32 0.09 10.72 2.06 68.81
750MB 21.2 0.06 12.09 1.56 65.09
1GB 19.68 0.05 11.96 1.23 67.08

Size of dataset

Average CPU (%)

%
user

%
nice

%
system

%
Iowait

%
Idle

4 threads 8 threads 4 threads 8 threads 4 threads 8 threads 4 threads 8 threads 4 threads 8 threads
24MB 19.52 19.47 0.05 0.05 11.87 11.86 1.2 1.2 67.34 67.4
96MB 19.36 19.33 0.05 0.05 11.74 11.72 1.2 1.2 67.66 67.7
250MB 17.41 17.31 0.11 0.11 10.03 9.96 2.45 2.43 70 70.19
500MB 18.36 18.44 0.09 0.09 10.77 10.84 2.07 2.08 68.71 68.55
750MB 17.61 17.8 0.04 0.04 10.74 10.94 1.12 1.09 70.48 70.12
1GB 19.86 19.92 0.05 0.05 12.08 12.11 1.24 1.24 66.77 66.68

IV. Parallel Code

Table V. Comparison of serial and parallel code with respect to CPU Time (in seconds) (Intel Xeon processor)

Size of Dataset Serial code
 Parallel code

 4 threads 8 threads
24MB 21.93 19.12 18.92
96MB 86.54 77.28 78.44
250MB 223.57 215.09 213.37
500MB 442.4 424.42 428.28
750MB 633.77 605.47 610.95
1GB 914.83 851.4 854.12

Table VI. Comparison of serial and parallel code with respect to Memory usage (in bytes) (Intel Xeon processor)

Size of Dataset Serial code
 Parallel code

 4 threads 8 threads
24MB 9329 14986 15073
96MB 9409 6419 6834
250MB 9463 7348 7695
500MB 9519 8170 8751
750MB 9567 8850 8917
1GB 9630 8979 9049

VII. Serial Code

Table VII and VIII. Comparison of serial and parallel code with respect to I/O communication (Intel Xeon processor)

Size of dataset Average CPU (%)

% user % nice % system % iowait % idle
24MB 0.91 0 0.76 0.17 98.15
96MB 0.92 0 0.77 0.17 98.14
250MB 5.52 0.03 6.5 4.55 83.40
500MB 5.71 0.01 7.21 1.84 85.22
750MB 6.09 0.01 7.95 1.08 84.88
1GB 6.67 0.01 8.2 0.58 84.55

51820 International Journal of Current Research, Vol. 9, Issue, 06, pp.51818-51822, June, 2017

VIII. Parallel Code

Figure 5. Graph representing the comparison of serial and
parallel code with respect to CPU Time (in seconds) on 1GB

dataset

Figure 6. Graph representing the comparison of serial and
parallel code with respect to Memory usage (in bytes) on 1GB

dataset

Figure 7. Graph representing the serial code with respect to I/O
communication (in average CPU %) on 1GB dataset

Figure 8. Graph representing the parallel code with respect to I/O

communication (in average CPU %) on 1GB dataset

Conclusion

Various algorithms on machine learning were studied. Most
efficient was back propagation algorithm. The serial code of
this algorithm was implemented on different datasets of
different sizes and executed on Intel 64-bit processor. We
evaluate the performance with respect to CPU time, memory
usage, and I/O communication. After this, code profiling and
code optimization were carried out. Then we execute parallel
code using OpenMP for all the datasets and evaluate the
performance with respect to the above-mentioned parameters.
Then we perform benchmarking of both the codes on Intel
Xeon processor. It is observed that the time for execution,
memory consumed and I/O communication in serial time is
more than compared to the parallel code. Also, these factors get
reduced on increasing the number of threads. In addition, Intel
Xeon allows smooth execution of both the serial as well as
parallel code as compared to that on Intel 64-bit processor.

Acknowledgment

I would like to thank Mr. Vinoth Kumar R. of Veltech
University Chennai for his valuable suggestions and Mr.
Aditya Kumar Sinha and Ms. Ruchika from C-DAC Pune for
providing me infrastructure and motivation during the
coursework. This work is done as part of M. Tech dissertation
work.

REFERENCES

Jiang, P. Chen, C. and Liu, X. 2016. "Time series prediction for

evolutions of complex systems: A deep learning
approach," 2016 IEEE International Conference on Control
and Robotics Engineering (ICCRE), Singapore, pp. 1-6.

Khatri, S. K., Dutta, S. and Johri, P. 2015. "Recognizing
images of handwritten digits using learning vector

VIII. Parallel Code

Size of dataset

Average CPU (%)

%
user

%
nice

%
system

%
iowait

%
Idle

4 threads 8 threads 4 threads 8 threads 4 threads 8 threads 4 threads 8 threads 4 threads 8 threads
24MB 3.2 3.18 0.04 0.04 1.53 1.65 3.69 3.27 91.54 91.85
96MB 3.54 3.65 0.03 0.03 2.66 2.97 2.39 2.09 91.39 91.26
250MB 3.92 4.24 0.02 0.02 3.59 4.24 1.61 1.41 90.87 90.09
500MB 4.84 5.29 0.02 0.02 5.28 6.04 1.2 1.11 88.66 87.55
750MB 5.21 5.63 0.01 0.01 5.85 6.57 0.83 0.77 88.10 87.01
1GB 6.38 6.06 0.01 0.01 7.91 7.33 0.65 0.71 85.05 85.89

51821 Ishan Borker et al. Parallelization of Backpropagation algorithm and benchmarking

quantization artificial neural network," 2015 4th
International Conference on Reliability, Infocom
Technologies and Optimization (ICRITO) (Trends and
Future Directions), Noida, pp. 1-4.

Shrestha, S., Bochenek, Z. and Smith, C. "Artificial Neural
Network (ANN) beyond cots remote sensing packages:
Implementation of Extreme Learning Machine (ELM) in
MATLAB," 2012 IEEE International Geoscience and
Remote Sensing Symposium, Munich, 2012, pp. 6301-
6304.

Chen, X. and Long, S. 2009. "Adaptive Multi-versioning for
OpenMP Parallelization via Machine Learning," 2009 15th
International Conference on Parallel and Distributed
Systems, Shenzhen, pp. 907-912.

Yadav, R., Singh, M. D. and Mahajan, N. 2010. "Parallelism
through dynamic instrumentation at runtime," 2010 Second
International Conference on Machine Learning and
Computing, Bangalore, pp. 321-325.

51822 International Journal of Current Research, Vol. 9, Issue, 06, pp.51818-51822, June, 2017

