RESEARCH ARTICLE

THE CHALLENGES IN THE MANAGEMENT OF CRYPTOCOCCAL MENINGITIS IN RESOURCE POOR SETTINGS: CASE REPORT

*Bulus, J., 3Shuai’bu, A. R. J., 1Dabe, F., 1Iyaoromi, O. O., 4Salihu, D., 2Jublick, M., 5Lenka, N. M., 5Gyede, S. G. and 6Joel, A. D.

1Department of Family Medicine, Plateau State Specialist Hospital, Jos
2AIDS Prevention Initiative in Nigeria, Plateau State Specialist Hospital, Jos
3Department of Family Medicine, Bingham University Teaching Hospital, Jos
4Department of Family Medicine, Jos University Teaching Hospital, Jos
5Department of Pharmacy, Plateau State Specialist Hospital, Jos
6Department of Microbiology, Plateau State Specialist Hospital, Jos

INTRODUCTION

The human immuno-deficiency virus (HIV) infection pandemic continues to be the most important risk factor for the development of central nervous system (CNS) cryptococcosis which is an important contributor to morbidity and mortality in these patients. (Lakshmi et al., 2007; Kambugu et al., 2008) Recent epidemiological shifts and an explosion of the HIV pandemic have resulted in the emergence of cryptococcal meningitis as a major public health problem. (Jarvis et al., 2010; Park et al., 2009) It is the leading cause of community acquired meningitis in Sub-Saharan Africa and South-East Asia. (Park et al., 2009; Perfect et al., 2010; Liechty et al., 2007) Estimates from Sub-Saharan Africa and South-East Asia in the year 2009 suggested that cryptococcal meningitis affects 957,000 people every year with an annual mortality equaling or exceeding that from tuberculosis. (Park et al., 2009; Perfect et al., 2010) Cryptococcal meningitis is a life threatening disease with a 100% mortality rate in the absence...
of approved anti-fungal therapy especially in resource poor settings. (Mwaba et al., 2001) In-hospital acute mortality from cryptococcal meningitis continues to remain high ranging between 30-50% even with anti-fungal therapy. (Kambugu et al., 2008; Perfect et al., 2010; Sorrell and Chen, 2010)

Case presentation

In this case, a 40year old newly diagnosed retroviral disease patient presented with a two weeks history of recurrent headache, projectile vomiting and neck stiffness. She had no prior history of convulsions or loss of consciousness. She had a history of blurring of vision and gradual weakness of the right upper and lower limbs. She had no history of urinary or faecal incontinence. She had no history of cough, night sweats or contact with a patient with tuberculosis. She had no history of diarrhea, abdominal swelling or pain but she had a history of progressive weight loss prior to onset of the symptoms. She was married with three children in a monogamous setting. The husband is HIV negative. She was a cleaner in a government owned health facility. She had no history of alcohol intake or cigarette smoking. Physical examination showed a young lady, ill-looking, afebrile, anicteric, not pale. She had no oral thrush. She was conscious and alert. She was oriented with severe neck stiffness. Brudzinski’s and kernig signs were positive. The power on the left upper and lower limbs was 4/5 while on the right upper and lower limbs 3/5. Her baseline CD4 was 34cells/mm³. Serum Cryptococcal antigen (CrAg) screening and baseline viral load were not done because the national guideline recommends a viral load six month after ART initiation. The cerebrospinal fluid (CSF) Indian ink staining showed yeast cells of cryptococcal neoformans=30cells per high power field. The CSF chemistry and hematology were normal. The lumbar puncture opening pressure and intracranial pressures were not measured because there are no facilities for such procedures. She was managed as a case of cryptococcal meningitis. She was admitted and commenced intravenous Fluconazole 1.2g daily, tablets Cotrimoxazole 960mg daily. She however became progressively restless and lapsed into coma and died on the fifth day on admission.

DISCUSSION

Infection with HIV is widespread and a challenge in resource poor countries. (Lakshmi et al., 2007; Kambugu et al., 2008) Various studies conducted in different parts of the world on the prevalence of cryptococcal meningitis in HIV patients reported a range of 2.09 to 68.6%. (Micol et al., 2007; French et al., 2002) The prevalence of cryptococcal meningitis in an Indian cohort study reported a prevalence of 46%. (Thakur et al., 2008) The most common signs and symptoms of cryptococcal meningitis include headache, fever, abnormal behavior, seizure, vomiting and double vision. (Thakur et al., 2008; Adeyemi and Ross, 2014) Others are weakness of the limbs, complete stroke, incontinence, irreversible blindness, deafness and coma. (Lakshmi et al., 2007; Kambugu et al., 2008; Thakur et al., 2008; Adeyemi and Ross, 2014; Carlson et al., 2014) The index patient presented with a history of recurrent headache, vomiting and neck stiffness. She also had a history of blurring of vision and weakness of the limbs. There are several modalities available for the diagnosis of cryptococcal meningitis in HIV infected persons. (Boulware et al., 2014) Diagnosis of cryptococcal meningitis based on microscopy and culture of the antigen. The use of India ink staining remains a common diagnostic tool for identifying Cryptococcus in CSF, yet the sensitivity is <86%. (Boulware et al., 2014; Kisenge et al., 2007) Although readily available, the use of India ink as the sole means of diagnosis results in misdiagnosis in 1 of every 11 patients presenting with meningitis as reported by a study from Uganda. (Boulware et al., 2014) India ink analysis is insensitive for low fungal burden, which can be common in patients presenting early after symptom onset or those already on ART. (Boulware et al., 2014; Mahsa et al., 2015) The index patient had Indian ink staining that showed cryptococcal neoformans in CSF. Culture is considered the gold standard for the diagnosis of cryptococcal meningitis, but it has several disadvantages. (Boulware et al., 2014; Mahsa et al., 2015; Boulware, 2012) Fungal culture requires laboratory infrastructure, electricity and trained Technicians. Culture can take up to 7 days to grow and the culture plates need to be incubated for up to 10 days to ensure reliable quantitative count. Culture can also produce false negative results when the fungal burden is low but diagnostic yield can be improved with higher CSF volume. (Boulware et al., 2014; Mahsa et al., 2015; Boulware, 2012) The managing hospital which is a secondary health care facility located in the state capital and responsible for providing health care to patients among whom are HIV patients had no capacity for culturing cryptococcal neoformans. The absence of equipment to culture cryptococcal neoformans is a common finding in most secondary and tertiary care facilities in developing countries Nigeria inclusive.

The detection of cryptococcal antigen (CrAg) in CSF, serum or plasma has become an essential diagnostic tool and should be performed on CSF for all patients with HIV and suspected meningitis or any central nervous system (CNS) symptoms. (Mahsa et al., 2015; Boulware, 2012; Temstet et al., 1992) CSF testing should occur regardless of other CSF parameters. (Mahsa et al., 2015; Boulware, 2012; Temstet et al., 1992) In resource limited settings, the recent development of CrAg lateral flow assay (LFA) has revolutionized cryptococcal meningitis diagnosis. (Mahsa et al., 2015; Boulware, 2012; Temstet et al., 1992) The CrAg LFA is a point of care test that rapidly detects cryptococcal antibodies against C. neoformans. It is in-expensive; doesn’t need cold chain, has slightly better sensitivity than latex agglutination or enzyme immune-assay, more sensitive at detecting lower CSF antigen levels and takes only 10 minutes to obtain results. In a reported study in Uganda and South Africa, the specificity and sensitivity of CrAg LFA was reported as 99.1% and 99.3% respectively in CSF while the sensitivity in blood was ≥ 99% when positive in CSF. (Boulware et al., 2014; Jarvis et al., 2011; Lourens et al., 2014) Even though CrAg LFA is recommended as point of care test kit, it’s unavailability in most health care facilities located in resource poor settings makes it difficult to manage patients such as the 40year old woman who is presented in the case report. In a recent study in Uganda, there was perfect agreement between finger-stick whole blood, serum and plasma CrAg suggesting that testing from finger-stick whole blood is a viable option for detecting antigen CrAg particularly in settings where phlebotomy is not available or in patients with difficult venous access. (Williams et al., 2014) The CrAg LFA has also been evaluated in both urine and saliva but not sufficient to recommend routine screening using these fluids. (Magambo et al., 2014; Kwizera et al., 2014)

In addition to these primary modalities available for diagnosing cryptococcal meningitis, the use of 1-3-ß-D Glucan and PCR
are supportive. (Rhein et al., 2014; Rhein et al., 2014) The management of cryptococcal meningitis is done in three phases: induction, consolidation and maintenance therapy. The goal of induction therapy is the rapid sterilization of the CSF. (Mahsa et al., 2015; Bicanic et al., 2009) Current guidelines recommend a two weeks course of high dose amphotericin-B intravenously in combination with flucytosine as first line therapy for the treatment of cryptococcal meningitis. (Perfect et al., 2010) This recommendation is the outcome of studies comparing the efficacy of three different induction agents consisting of a combination of high dose amphotericin-B and flucytosine, high dose amphotericin-B and fluconazole and high dose amphotericin-B monotherapy. Combination therapy with amphotericin B and flucytosine was associated with a <40% lower hazard of mortality at 10weeks. (Mahsa et al., 2015; Day et al., 2013) This regimen remains widely unavailable in most parts of the world especially where the burden of disease is highest, where this medication regimen is available, it is costly and monitoring side effects is a challenge. (Mahsa et al., 2015; Bicanic et al., 2009; Perfect et al., 2010; Day et al., 2013; Rajasingham et al., 2012) For the index patient, high dose intravenous fluconazole was the only option available at the facility where she presented and this may have negatively impacted the outcome of the case management.

The consolidation phase of therapy currently consists of fluconazole 400-800mg every day for a duration of at least 8weeks. (Perfect et al., 2010) Most guidelines recommend starting consolidation therapy after 2weeks of induction therapy, although the start of consolidation therapy is expected to be individualized based on patient response to induction therapy. (Kambugu et al., 2008; Mahsa et al., 2015; Perfect et al., 2010) Guidelines support the use of longer duration of high dose fluconazole throughout the consolidation phase if suboptimal induction therapy is considered; mainly monotherapy with fluconazole or when CSF sterility has not been achieved. (Perfect et al., 2010) The index patient died on the fifth day of admission despite high dose fluconazole. After successful induction and consolidation therapy, it is recommended that culture negative patients should continue oral fluconazole 200mg daily as maintenance therapy. (Perfect et al., 2010) Secondary prophylaxis can be safely discontinued in patients on ART and with undetectable HIV RNA levels for greater than three months, who attain CD4 cell counts of ≥ 100cells/µL. (Perfect et al., 2010) When HIV viral load testing is unavailable, the WHO recommends continuation of maintenance therapy for one year and discontinuation of the therapy when CD4 counts are ≥200cells/µL. (WHO 2011) Fluconazole maintenance therapy is to be re instituted in patients demonstrating immunologic failure, ART interruptions, or a fall in CD4 counts to below 100cells/µL. (Perfect et al., 2010) The index patient had a baseline CD4 of 34cells/µL with no HIV RNA done. Another component of cryptococcal meningitis management is the management of raised intracranial pressure. Elevated intracranial pressure (ICP) is defined as CSF pressure ≥ 25cmH2O and is a common complication of cryptococcal meningitis. (Loyse et al., 2010) Elevated ICP is most often characterized by headaches, vomiting, papilledema, reduction of visual acuity, blindness, cranial nerve palsies, confusion, altered mental status and coma. (Lakshmi et al., 2007; Kambugu et al., 2008; Thakur et al., 2008; Adeyemi and Ross, 2014; Carlson et al., 2014) The index patient presented with a complaint of recurrent headache, vomiting, blurring of vision and altered mental status. Management of raised ICP should consist of baseline lumber puncture and daily therapeutic tap if ICP ≥ 25cmH2O using a manometer to monitor the pressure. (Mahsa et al., 2015; Perfect et al., 2010; Lourens et al., 2014) These high-income country guidelines are not very realistic in resource limited settings and hence typically ignored. (Perfect et al., 2010; Day et al., 2013; Rajasingham et al., 2012; WHO 2011) In resource limited settings where manometers are not available, IV tubing or non-invasive methods such as handheld tonometer or ultrasound to measure intraocular pressure can be used as a surrogate for measuring ICP. (Meda et al., 2014; Nabeta et al., 2014) Other methods of decreasing ICP include; the use of ventriculo-peritoneal shunts, acetazolamide, mannitol or corticosteroids. (Mahsa et al., 2015; Meda et al., 2014; Nabeta et al., 2014) The index patient did not have the benefit of such procedures because the equipment were not readily available. The timing of ART initiation is an important consideration for persons with cryptococcal meningitis because with advanced immune-suppression, people are at high risk of IRIS and eventual death. (Zolopa et al., 2009) ART initiation should however be balanced against the risk for development of paradoxical immune reconstitution inflammatory syndrome (IRIS) (Mahsa et al., 2015; Zolopa et al., 2009) The reported incidence of paradoxical IRIS is highly variable ranging between 8-49%, presenting as soon as 4days and up to 6years after ART initiation. Paradoxical IRIS carries a mortality rate of 0-36%. (Mahsa et al., 2015; Haddow et al., 2010; Longley et al., 2013; Katchanov et al., 2015) Better microbiologic therapy and achieving CSF sterility is a key principle at reducing the risk of IRIS. (Chang et al., 2013) The index patient died before initiation of ART.

Conclusion
Cryptococcal meningitis remains a prevalent opportunistic infection with high morbidity and mortality especially in resource limited settings. Where laboratory infrastructures are not available, the diagnosis of cryptococcal meningitis with CrAg LFA can help detect disease early and rapidly. The high income countries need to consider support for diagnosis and management of cryptococcal meningitis in resource limited countries. This will help to reduce global contribution to morbidity and mortality from resource limited countries as a result of AIDS defining illnesses.

Consent
Written informed consent was obtained from the patient’s husband and daughter who knew of her HIV status.

Competing interest
The Authors do not have a competing interest to declare.

REFERENCES


Levels of (1->3)-D-Glucan in Cryptococcal Meningitis. Open Forum Infectious Diseases. 2014;1(3) ofu105-ofu.

*******