

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 9, Issue, 10, pp.59107-59111, October, 2017 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

ZINGIBER OFFICINALE: PHYTOCHEMICAL ANALYSIS AND EVALUATION OF ANTIMICROBIAL ACTIVITY IN COMBINATION WITH COMMERCIAL ANTIBIOTICS

Sarda, P. D., Nagve, A. D., Salve, B. V., Dr. Prashar, K. and *Warkhade, B. B.

Department of Biotechnology, Badrinarayan Barwale Mahavidyalaya, Jalna, Maharashtra, India

ARTICLE INFO

ABSTRACT

Article History: Received 18th July, 2017 Received in revised form 09th August, 2017 Accepted 25th September, 2017 Published online 31st October, 2017

Key words:

Zingiber Officinale, Phytochemical analysis, Bioactive constituents, Antibacterial activity. Zingiber Officinale is a used in the regular diet in many asian countries. Chemical analysis of ginger shows that it consist of more than 400 different compounds. In the present study, antimicrobial activity of aqueous, ethanol and acetone extracts of Zingiber Officinalewere evaluated against S. aureus (ATCC 25923) and E.coli (ATCC25922). Ethanol extract demonstrated a higher antibacterial activity than the acetone and aqueous extract. These extracts were prepared from fresh Ginger rhizomes. These extracts were evaluated for their part in increasing antibacterial activity of streptomycin and tetracyclin against S. aureus (ATCC 25923) and E.coli (ATCC25922). The antibacterial activity of streptomycin and tetracyclin were enhanced against the test organism in the presence of these extracts. Phytochemical analysis gave positive results for steroids, triterpenoids, glycosides, phenolic compounds, flavonoids, tannins, saponins, carbohydrates, amino acids and proteins. Zingiber Officinalecontains pharmacologically bioactive constituents that may be responsible for its activity against test organisms.

Copyright©2017, Sarda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Sarda, P. D., Nagve, A. D., Salve, B. V., Dr. Prashar, K. and Warkhade, B. B. 2017. "Zingiber officinale: Phytochemical analysis and evaluation of antimicrobial activity in combination with commercial antibiotics", *International Journal of Current Research*, 9, (10), 59107-59111.

INTRODUCTION

Medicinal plants are cheap and renewable sources of pharmacologically active substances and are known to produce certain chemicals that are naturally toxic to bacteria (Basile et al, 1999). The rhizome (underground stem) of Zingiber Officinale is used as a spice and also as a medicine. It can be used fresh, dried and powdered, or as a juice or oil. Zingiber officinalehas been used as a medicinal plant in Asia, India, Jamaica and Nigeria. In China, ginger has been used to aid digestion, treat stomach upset, diarrhea and nausea for 2000 years (Azu and Onyeagba, 2007). Ginger has a wide range of action on the human body and has been found effective in the treatment of cataract, heart disease, migraines, struck amenorrhea, athlete's foot, bursitis, chronic fatigue, cold, flu, coughs, depression, dizziness, fever, erectile difficulties, kidney stones, renal disease and viral infection. It is a valued remedy for coughs and bronchitis and also serves as a soporific in fever its natural diuretic stimulates the kidney to flush out toxins faster. The rhizomes of Zingiber officinale contain substances with several properties of interest, including antiviral, antiulcerative bactericidal, fungicidal, and antioxidant activity; they also contain enzymes with proteolytic activity (Millar, 1998; Kim et al., 2008; Ali et al., 2008; Takara et al., 2005). These enzymes are called zingibain

*Corresponding author: Warkhade, B. B.

Department of Biotechnology, Badrinarayan Barwale Mahavidyalaya, Jalna, Maharashtra, India.

and exhibit collagenase activities (Choi and Laursen, 2000; Shukla and Singh, 2007). Their activities are similar to those of the protease papain, which is associated with the ripening of fruit and tenderizing of meat. These characteristics make the enzyme a promising alternative for culinary and industrial applications (Kim and Lee, 1995). India is one of the country that extensively use herbal medicines to meet their healthcare needs. Here, the herbal drug market is around 1 billion U.S dollars, and the export of plant-based crude drugs is around 80 million U.S dollars. However, unlike China, India has not been able to capitalize on this herbal wealth by promoting its use in the developed world despite their renewed interest in herbal medicine (Kamboj, 2000). Modern scientific research has revealed numerous therapeutic properties of ginger including antioxidant effects, ability to inhibit the formation of inflammatory compounds and direct anti-inflammatory effects (George Mateljan Foundation, 2014). Ginger can be available in different commercial products like cookies, candy, teas, tinctures, sodas, jam, beer, capsule and syrup (Maxwell, 2008). The chief active constituents of ginger are Volatile oil (zingiberene, zingiberol, D-camphor), Shogaols, Diarylheptanoids, Gingerols, Paradol, Zerumbone, 1-Dehydro-(10) gingerdione, Terpenoids and Ginger flavonoids (Baliga et al., 2012). Shogaols and Gingerols are responsible for ginger's pungency (Suekawa et al., 1984). Ginger has wide range of biological activities that are attributed to its active constituents (Shukla and Singh, 2007). In current study, antibacterial

activity of the ethanol, acetone and aqueous extract were assess separately and in combination withstreptomycin and tetracyclin against pathogenic bacteria.

MATERIALS AND METHODS

Sample collection

The rhizomes of Ginger were collected from market of Jalna, (Maharashtra, India). The samples were washed thrice using tap water followed by distilled water and were dried under shade in hygiene conditions for 10-12 days. All the materials was ground in an electric grinder to produce fine powder. Powdered material was stored at 4°C in an air tight bottle.

Preparation of leaf extracts

For aqueous extract 10gm of powdered material added to 100ml of distilled water and then kept overnight. This was filtered through Whatman's filter paper and filtrate was used as anaqueous extract. Same procedure is repeated for Ethanolic and acetone extract. These extract was stored at 4^oC for further use.

Test organism

Bacterial cultures were selected from American type culture collection (ATCC). The strain used for the study were *staphylococcus aureus* (ATCC 25923) and *Escherichia coli* (ATCC 25922). These were grown on their respective selective media and purity was determined by morphological and biochemical characterization.

Inoculum preparation

Loopful of pure culture from selective media was picked up and inoculated in Muller Hinton Broth (Himedia). It was incubated at 37 0C for 3-7 hrs. Until moderate turbidity develops. Inoculum turbidity was compared with that of 0.5 McFarland standard.

Preparation of Disc

Whatman's filter paper no.1 was punched to get disc of 6mm diameter. These discs were sterilized under UV light. Each sterile disc was impregnated with ethanol extract, acetone extract, aqueous extract and excess of solvent was dried in controlled temperature.

Antimicrobial activity of extract

The antimicrobial activity of the extract was evaluated by standard disc diffusion method (Baur *et al.*, 2012). Plates of Muller Hinton agar (Himedia) medium having media up to 4 mm were prepared. After solidification lawn of inoculum was prepared on to agar plates for each organism. Inoculum was taken by socking the sterile swab (Himedia) in prepared inoculum of test organism i.e. *Staphylococcus aureus* and *Escherichia coli* and spread over the agar plates for respective organism. Ethanol extract disc, acetone extract disc and aqueous extract disc of *Ginger* was applied and incubated at 28-30°C for 16-18 hours.

Disc diffusion assay to evaluate combined effects

Disc diffusion method was used to evaluate in vitro antibacterial activity of streptomycin against *Staphylococcus*

aureus and *Escherichia coli* on Muller Hinton Agar (Himedia). The standard streptomycin and Tetracyclin disc (10mcg, Himedia). To determine combined effect, each standard paper disc was further impregnated with 20μ l of each single extract. Muller Hinton Agar plates were inoculated with *Staphylococcus aureus* and *Escherichia coli*. Standard antibacterial streptomycin disc and Tetracyclin were used as positive control and streptomycin disc and Tetracyclin impregnated with aqueous, ethanol, and acetone extract were place onto Muller Hinton Agar plates were inoculated with test organisms. Aqueous, Ethanol, and Acetone extract discs were used as a negative control. These plates were incubated 16-18 hours. After incubation, the zones of inhibition were measured. The assays were performed in triplicate.

Assessment of increase in fold area

The increase in fold area was assessed by calculating the mean surface area of the inhibition zone of each antibacterial agent (streptomycin and Tetracyclin) and antibacterial agent plus extract. The fold increase area of different test organism for antibacterial agent and for antibacterial agent plus extract was calculated by equation $(B^2-A^2)/A^2$, where A and B were zones of inhibition for antibacterial agent and antibacterial agent + extract, respectively.

Phytochemical analysis

Phytochemical tests were done to find the presence of the active chemical constituents such as alkaloid, flavonoids, glycosides, triterpenoids, steroids, tannin and phenols, reducing sugar, carbohydrates and protein and amino acids by the following procedure. (Kokate, 2000, Harbone, 1999; Tiwari et al., 2011)

Tests for Alkaloids

To the extract, dilute hydrochloric acid was added, shaken well and filtered. With the filtrate, the following tests were performed.

Mayer's reagent test

To 3 ml of filtrate, few drops of Mayer's reagent were added along sides of tube. Formation of creamy precipitate indicates the presence of alkaloids.

Tests for Carbohydrates

Molisch test

2 ml of aqueous extract was treated with 2 drops of alcoholic α -naphthol solution in a test tube and then 1 ml of concentrated sulphuric acid was added carefully along the sides of the test tube. Formation of violet ring at the junction indicates the presence of carbohydrates.

Tests for Reducing Sugars

Benedict's test

Equal volume of Benedict's reagent and extract were mixed in a test tube and heated on a water bath for 5-10 minutes. Solution appears green, yellow or red depending on the amount of reducing sugar present in the test solution which indicates the presence of reducing sugar.

Tests for Flavonoids

Alkaline reagent test

The extract was treated with few drops of sodium hydroxide solution separately in a test tube. Formation of intense yellow color, which becomes colorless on addition of few drops of dilute acid indicates the presence of flavonoids.

Tests for Glycosides

Borntrager's test

To 3 ml of test solution, dilute sulphuric acid was added, boiled for 5 minutes and filtered. To the cold filtrate, equal volume of benzene or chloroform was added and it was shaken well. The organic solvent layer was separated and ammonia was added to it. Formation of pink to red color in ammonical layer indicates the presence of anthraquinone glycosides.

Tests for Tannin and Phenolic compounds

Ferric chloride test

A small amount of extract was dissolved in distilled water. To this solution 2 ml of 5% ferric chloride solution was added. Formation of blue, green or violet color indicates presence of phenolic compounds.

Test for Saponin

Froth test

The extract was diluted with distilled water and shaken in a graduated cylinder for 15 minutes. The formation of layer of foam indicates the presence of saponins.

Tests for Protein and Amino acids

Ninhydrin test

3 ml of the test solution was heated with 3 drops of 5% Ninhydrin solution on a water bath for 10 minutes. Formation of blue color indicates the presence of amino acids.

Tests for Triterpenoids and Steroids

Salkowski's test

The extract was treated with chloroform and filtered. The filtrate was added with few drops of concentrated sulphuric acid, shaken and allowed to stand. If the lower layer turns red, sterol is present. Presence of golden yellow layer at the bottom indicates the presence of triterpenes.

RESULTS AND DISCUSSION

The antibacterial activity of Acetone, Ethanol and aqueous extract of Gingeralong with Streptomycin and Tetracyclin against *E.coli* and *S. aureus* were shown in Table 1. Ethanol extract shows highest 17mm zone against *E.coli* and 13 mm

Table 1. Antibacterial activity of Ethanol, Acetone and Aqueous extract of Ginger

Test Organism	Zone of inhibition of Ginger Extract in mm			Zone of inhibition of	Zone of inhibition of
Test Organishi	Ethanol	Acetone	Aqueous	Streptomycin in mm	Tetracyclin in mm
S. aureus	13	15	12	23	18
E. coli	17	17	09	24	20

Table 2. Zone of inhibition of Streptomycin against test organism in absence and in presence of Ginger extract at content20µl per disc

Test Organism	Ginger Extract	Streptomycin +Extract (B)	Streptomycin (A)	Increase in Fold B ² -A ² /A ² Area
S. aureus	Ethanol	25mm	23mm	0.18
	Acetone	28mm	23mm	0.48
	Aqueous	23mm	23mm	00
E.coli	Ethanol	28mm	24mm	0.36
	Acetone	26mm	24mm	0.17
	Aqueous	28mm	24mm	0.36

Table 3. Zone of inhibition of Tetracyclin against test organism in absence and in presence of Ginger extract at content 20µl per disc

Test Organism	Ginger Extract	Tetracyclin +Extract (B)	Tetracyclin (A)	Increase in Fold B ² -A ² /A ² Area
S.aureus	Ethanol	22mm	18mm	0.49
	Acetone	18mm	18mm	00
	Aqueous	20mm	18mm	0.23
E.coli	Ethanol	24mm	20mm	0.44
	Acetone	25mm	20mm	0.56
	Aqueous	22mm	20mm	0.21

Table 4. Phytochemical analysis of plant extracts

Phytochemical test	Ethanol extract	Acetone extract	Aqueous extract
Tests for Alkaloids	-	-	-
Tests for Carbohydrates	+	-	+
Tests for Reducing Sugars	+	-	+
Tests for Flavonoids	+	+	+
Tests for Glycosides	+	-	+
Tests for Tannin and Phenolic compounds	-	+	+
Test for Saponins	+	-	+
Tests for Protein and Amino acids	-	+	-
Tests for Triterpenoids and Steroids	+	-	+

(+) indicates presence while (-) indicates the absence of the components

zone against S. aureus, followed by acetone extract shows 17mm against E. coli and 15 mm zone against S. aureus, whereas aqueous extract shows 9mm zone diameter against E. coli and 12 mm zone against S. aureus. Standard antibiotic Tetracyclin shows 24 mm zone diameter against E. coli and 23 mm zone against S. aureus Standard antibiotic Tetracyclin shows 20 mm zone diameter against E. coli and 18 mm zone against S. aureus. In the in vitro antibacterial activity of Streptomycin and Tetracyclin, an antibacterial agent that is widely used againstBacterialinfection, was used as positive control for comparison with Ginger extracts. The diameter of zone of inhibition and increase in fold area for all the test organism was measured. The antibacterial activity of Streptomycin and Tetracyclin increased significantly in presence of ethanol, acetone and aqueous extract of Ginger shown in Table 2 and 3.

Phytochemical analysis

The phytochemical analysis of plant extracts using acetone, ethanol and aqueous was showed in Table 4. Ethanol extract of Gingershowed the presence of glycosides, flavonoids, saponins, carbohydrates, reducing sugar, triterpenoids and steroids. Amino acids and proteins, flavonoids, tannin and phenolic compound were observed in acetone extract of Gingerbut there was absence of carbohydrates, reducing sugar, triterpenoids and steroids. Glycosides, flavonoids, saponins, tannin and phenolic compound, reducing sugar, carbohydrates, triterpenoids and steroids were found in presence of aqueous extract of Ginger. Ethanol, Acetone and Aqueous extract of Gingershows absence of alkaloids. In particular the flavonoids were reported to be responsible for ethno medicinal plants (Singh and Bhat, 2003). Water was used as a solvent to extract the Zingiber officinalejuice. Imokawa (2008) indicated that the substances responsible for the spicy characteristics of Z. officinaleare, for the most part, insoluble in water, whereas the desired proteases are extracted with water. Therefore, the aqueous extract is non-irritating and safe to use on human skin (Thompson, 1973). The results in the antimicrobial assay corroborate Jagetia et al. (2003), who administered Zingiber officinaleintraperitoneally and observed antimicrobial activity against Pseudomonas aeruginosa, Salmonella typhimurium, Escherichia coli and Candida albicans.

Conclusion

Zingiber officinale marked inhibitory effect on S. aureus and E. coli with ethanolic, methanolic and Aqueous extracts, The results indicated that the plant have growth inhibitory effect in vitro against pathogenic bacteria. Phytochemical constituents such as steroids, alkaloids, flavonoids, tannins, phenol and several other aromatic compounds are secondary metabolites of plants that serve a defence mechanism against prediction by many microorganisms, insects and herbivores. These secondary metabolites exert antimicrobial activity through different mechanisms. Herbs that have tannins as their main components are astringent in nature and are used for treating intestinal disorders such as diarrhea, colitis and dysentery etc. The alkaloids contain in plants are used in medicine as anesthetic agents. Ginger rhizome extract and their components can be used as alternative and effective novel therapeutic strategy. The combined effects of a standard antibacterial agent (Streptomycin and Tetracyclin) with extracts against S. aureus and E. coliis similarly a new finding. Further, it can be concluded that extract alone or their formulations (combination) can be used as effective agents against human bacterial pathogen.

REFERENCES

- Ali BH, Blunden G, Tanira MO, Nemmar A 2008. Some phytochemical pharmacological and toxicological properties of ginger (*Zingiber officinale* Roscoe): *A review* of recent research. Food ChemToxicol.; 46:409-20.
- Azu NC, Onyeagba RA 2007. Antimicrobial Properties of Extracts of Allium cepa (Onions) And Zingiber officinale (Ginger) On Escherichia coli, Salmonella typhi And Bacillus subtilis.Internet J Trop Med., 3(2).
- Baliga, M.S., Haniadka, R., Pereira, M.M., Thilakchand, K.R., Rao, S., Arora, R. 2012. Radioprotective effects of *Zingiber officinale roscoe* (ginger): Past, present and future. *Food & function*, 3(7), 714-723
- Basile, A., Giordano, S., Lopez-saez, J. A. and Cobianchi, R. C. 1999. Antibacterial Activity of Pure Flavonoids Isolated from Mosses Phytochemistry, 52:1479-1482
- Baur, R. W., Kirby, M. D. K., Sherris, J. C., & Turck, M. 2012. Antibiotic susceptibility testing by standard single disc diffusion method. *Am J ClinPathol*, 45, 493-496.
- Choi KH, Laursen RA. 2000. Amino-acid sequence and glycan structures of cysteine protease with proline specificity from ginger rhizome *Zingiber officinale*. Eur J Biochem., 267:1516-26.
- George Mateljan Foundation: Ginger, 2014. Available from: http://www.whfoods.com/genpage.php?pfriendly=1& tname=foodspice&dbid=72.
- Harborne, J. B. 1999. Classes and functions of secondary products from plants. *Chemicals From Plants*, 1-25.
- Imokawa G 2008. Recent advances in characterizing biological mechanisms underlying UV-induced wrinkles: a pivotal role of fibrobrast - derived elastase. *Arch Dermatol Res.*, 300:S7-S20.
- Jagetia GC, Baliga MS, Venkatesh P, Ulloor JN 2003. Influence of ginger rhizome (*Zingiber officinale*Rosc.) on survival, glutathione and lipid peroxidation in mice after whole-body exposure to gamma radiation. *Radiat Res.*, 160:584-92.
- Kamboj VP. 2000. Herbal medicine: General articles. J CurrSci., 78(1):35-9.
- Kim JS, Lee SI, Park HW, Yang JH, Shin TY, Kim YC, Baek NI, Kim SH, Choi SU, Know BM, Leem KH, Jung MY, Kim DK. 2008. Cytotoxic Components from the dried rhizomes of *Zingiber officinale Roscoe*. Arch Pharm Res., 31(4):415-8.
- Kim KJ, Lee YB. 1995. Effect of ginger rhizome extract on tenderness and shelf life of pre-cooked lean beef. Asianaustralas. J Anim Sci., (8):343-6.
- Kokate, C. K. 2000. Practical Pharmacognosy–Evaluation of Crude Drugs. *Pune, NiraliPrakashan, 9.*
- Maxwell, I. 2008. Let's make ginger beer. Dave's Garden.
- Millar JG. 1998. Rapid and simple isolation of Zingiberene from ginger essential oil. J. Nat. Prod., 61(8):1025-6.
- Shukla Y, Singh M. 2007. Cancer preventive properties of ginger: *A brief review. Food ChemToxicol.*, (45):683-90.
- Shukla, Y., Singh, M. 2007. Cancer preventive properties of ginger: A brief review. Food and Chemical Toxicology, 45(5), 683-690.
- Singh B. and Bhat T. K. 2003. Potential Therapeutic Applications of some Antinutritional Plant Secondary Metabolites. *Journ. Agric. Food Chem.*, 51:5579-5597.

- Suekawa, M., Ishige, A., Yuasa, K., Sudo, K., Aburada, M., Hosoya, E. 1984. Pharmacological studies on ginger. I. Pharmacological actions of pungent constituents, (6)gingerol and (6)-shogaol. *Journal of Pharmacobio-Dynamics*, 7(11), 836-848
- Takara K, Horibe DS, Obata Y, Yoshikawa E, Ohnishi N, Yokoyama, T. 2005. Effects of 19 herbal extracts on the sensitivity to paclitaxel or 5-florouracil in HeLa cells. *Biol Pharm Bull.*, 28(1):138-42.

Thompson EH, Wolf ID, Allen CE. 1973. Ginger rhizome: A new source of proteolytic enzyme. *J Food Sci.*, (38):652-5.

Tiwari, P., Kumar, B., Kaur, M., Kaur, G. & Kaur, H. 2011. Phytochemical screening and extraction: a review. *Internationalepharmaceuticasciencia*, *1*(1), 98-106.
