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INTRODUCTION 
 
The physics of dense quantum plasmas has received an immense interest not only because of 
astrophysical compact objects (like white dwarfs, neutron stars, active galactic nuclei, etc. 
Garcia-Berro, 2010; Mamun, 2010)), but also for their available application in the lab
interaction experiment (Berezhiani, 1992; Murkhmd
are usually consist of extremely dense iron/oxygen/carbon and helium nuclei 
degenerate plasma systems where the quantum mechanical effects (i.e., when the de Broglie thermal wavelength of the charged 
particles is equal or larger than the average inter
2016). The plasma in the interior of white dwarfs and in the crust of neutron stars are extremely dense and highly degenerate 
(Mamun, 2010; Chabrier, 2006; Lai, 2001; Harding
even more and the magnetic field strength can also be very large, i.e., 
high and the quantum-mechanical effects as
Rohm potential (causing the plasma particles tunneling) are expected to play an im
adding the quantum statistical pressure term (the Fermi
to the fluid model generalized QHD model 
Hossain, 2011; Haas, 2003; Bhowmik, 2007; 
quantum effects of plasma particles in dif
quantum plasmas was first studied by Pines 
Bohm potentials associated with the plasma particles significantly modify the basic features of the nonlinear IA waves. Bhowmik 
et al. (2007) investigated the effects of quantum diffraction parameter 
modifying the electron-acoustic (EA) waves in a quan
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ABSTRACT 

This research focuses on the " Quality of service The nonlinear propagation of electron
acoustic solitary waves in a degenerate quantum plasma (containing relativistic magnetized quantum 
electrons and light ions in presence of stationary heavy ions) have been theoretically investigated. The 

weg-de Vries (K-dV) and modified K-dV (mK-dV) equations are derived by adopting the 
reductive perturbation method. Their stationary solutions are derived and analyzed analytically as 
well as numerically to study some new basic features of the El acoustic 
commonly found to exist in degenerate quantum plasma. It is found that the basic properties (viz. 
amplitude, width, and phase speed, etc.) of the El acoustic waves are significantly modified by the 
effects of relativistic ally degenerate electrons and light ions, quantum pressure, number densities of 
plasma particles, and external magnetic field, etc. The results of this theoretical investigation may be 
useful for understanding the formation and features of the solitary structu
objects like white dwarfs, neutron stars, etc. 
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The physics of dense quantum plasmas has received an immense interest not only because of 
astrophysical compact objects (like white dwarfs, neutron stars, active galactic nuclei, etc. (Woolsey

but also for their available application in the laboratory 
Murkhmd, 2006). The degenerate compact objects e.g. white dwarfs, neutron stars, etc. 

are usually consist of extremely dense iron/oxygen/carbon and helium nuclei (Shiikla, 2011; Massey
degenerate plasma systems where the quantum mechanical effects (i.e., when the de Broglie thermal wavelength of the charged 
particles is equal or larger than the average inter-particle distance) play an important role in the plasma dynamics 

The plasma in the interior of white dwarfs and in the crust of neutron stars are extremely dense and highly degenerate 
Harding, 2006) (plasma particles number densities can be of the order of 10

even more and the magnetic field strength can also be very large, i.e., B » WgG). For such plasmas, the Fermi tempera
mechanical effects associated with the quantum statistical pressure and the quantum force involving the 

Rohm potential (causing the plasma particles tunneling) are expected to play an important role (
tistical pressure term (the Fermi-Dirac distribution) and the quantum diffraction term (the Bohm potential) 

to the fluid model generalized QHD model (Manfredi, 2001; Manfredi, 2005) is obtained. A number of works 
, 2007; Saeed-ur-Rehman, 2012; Hossen, 2015) have been done by con

quantum effects of plasma particles in different plasma medium. The behaviour of high densities and low temperatures 
ied by Pines (Pines, 1961). Haas et al. (Haas et al.,  2003) found in t

plasma particles significantly modify the basic features of the nonlinear IA waves. Bhowmik 
tigated the effects of quantum diffraction parameter H, and the equilibrium density ratio of the plasma species in 

acoustic (EA) waves in a quantum ET plasma.  
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The nonlinear propagation of electron-ion (El) 
acoustic solitary waves in a degenerate quantum plasma (containing relativistic magnetized quantum 
electrons and light ions in presence of stationary heavy ions) have been theoretically investigated. The 

dV) equations are derived by adopting the 
reductive perturbation method. Their stationary solutions are derived and analyzed analytically as 

tures of the El acoustic solitary structures that are 
commonly found to exist in degenerate quantum plasma. It is found that the basic properties (viz. 
amplitude, width, and phase speed, etc.) of the El acoustic waves are significantly modified by the 

degenerate electrons and light ions, quantum pressure, number densities of 
plasma particles, and external magnetic field, etc. The results of this theoretical investigation may be 

tures of the solitary structures in astrophysical compact 
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The physics of dense quantum plasmas has received an immense interest not only because of their omnipresence in many 
Woolsey et al.,  2004; Shapiro, 1983; 

oratory i.e., intense laser-solid matter 
. The degenerate compact objects e.g. white dwarfs, neutron stars, etc. 

Massey, 1976) are ideal examples of 
degenerate plasma systems where the quantum mechanical effects (i.e., when the de Broglie thermal wavelength of the charged 

the plasma dynamics (Abdikian, 
The plasma in the interior of white dwarfs and in the crust of neutron stars are extremely dense and highly degenerate                

ties can be of the order of 1030cm~3, or 
For such plasmas, the Fermi temperature Tp is 
pressure and the quantum force involving the 

(Manfredi, 2005). Therefore, by 
e quantum diffraction term (the Bohm potential) 

A number of works (Rouhani, 2014; 
have been done by considering the 

ferent plasma medium. The behaviour of high densities and low temperatures 
found in their investigation that the 

plasma particles significantly modify the basic features of the nonlinear IA waves. Bhowmik 
and the equilibrium density ratio of the plasma species in 
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On the other hand, Ali et al. (2007) analyzed the IA waves in an EPI plasma, and found that the nonlinear properties of the IA 
waves are significantly affected by the inclusion of the quantum terms in the momentum equations of electrons and positrons. But 
none of them considered the effects of external magnetic field and the presence of the heavy ions.  It is well known that (Miller, 
1987; Plastino, 1993; Gervino, 2012) the presence of external magnetic field (which causes the obliqueness of the wave 
propagation) plays a vital role in modifying the basic features of the linear and nonlinear waves in space and astrophysical plasmas 
(Mahmood, 2008; Sultana, 2010; El-Tantawy, 2012; Shahmansouri, 2013; Alinejad, 2013; Ashraf et al.,  2014), and that the most 
of astrophysical degenerate quantum plasma systems like white dwarfs and neutron stars usually contain degenerate electrons and 
light ions along with heavy ions (Koester, 1990). This means that the effects of heavy ions and magnetic field must be considered, 
specially for the study of the nonlinear phenomena in the degenerate astrophysical objects (Woolsey, 2004; Shapiro, 1983; Torres 
et al.,  2010; Mamun, 2010). Obliquely propagating electron-acoustic (EA) solitary waves (SWs) in a two electron population 
quantum rnag-netoplasma was theoretically investigated by Masood and Mushtaq (2008). They found that propagation character-
istics of the EA SWs are significantly affected by the presence of quantum corrections and the ratio of hot to cold electron 
concentration. Recently, Hossen and Mamun (Hossen, 2011c) have theoretically investigated the nonlinear positron-acoustic (PA) 
waves propagating in the fully relativistic electron-positron-ion plasma and found that the effects of relativistic degeneracy of 
electrons and positrons, static heavy ions, plasma particles velocity, and enthalpy, etc. have significantly modified the ba-sic 
properties of the PA SWs. Using a fully relativistic set of two fluids plasma equations, Lee and Choi (Lee, 2007), Tribeche and 
Boukhalfa (2011), Saberian et al, (2011), and Akbari-Moghanjoughi (2011) have studied the characteristics of the nonlinear IA 
waves in different fully relativistic plasmas. Therefore, in our present work, we have examined the basic properties of the El 
acoustic waves propagating in a degenerate quantum plasma composed of relativistically magnetized quantum electrons and light 
ions in the presence of stationary heavy ions. We have considered the quantum mechanical (such as tunneling associated with the 
Bohm potential) effects for both electrons and light ions which abundantly occurs in different astrophysical situations (viz. white 
dwarfs, neutron stars, active galactic nuclei, etc. (Woolsey, 2004; Shapiro, 1983; Garcia-Berro, 2010; Mamun, 2010), and 
laboratory plasmas like intense laser-solid matter interaction experiment (5. 6). The manuscript is organized as in Sec. II, the basic 
equations governing our plasma model are presented; in Sec. Ill and IV, the K-dV and mK-dV equations along with their solutions 
are derived; in Sec. V, a brief discussion is given. 
 
MODEL EQUATIONS 
 

We consider a collision less plasma system with an ambient magnetic field directed along the z axis, i.e., (Bo = oBẑ ). where ẑ is a 

unit vector in the z direction. The obliquely propagation of the nonlinear acoustic SWs through our considered plasma system is 
assumed such that the wave vector lies in the x-z plane. At equilibrium, the quasi-neutrality condition can be expressed as 

,0 eoiohohZ   where ho , io , and eo  are the equilibrium number densities of immobile heavy ions, light ions, and 

electrons, respectively, and Zh is the immobile heavy ions charge state. The unnormalized dynamic equations for the considered 
magnetized quantum El plasmas are as follows: 
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in which the relativity parameter 
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 and 
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 is the Fermi relativistic momentum of s'th species. 

Taking 110 , ssss NNNN 
 is the perturbation of the s'th species with 1sN

 Nso and the Taylor expansion up to second 
order, Eq. (4) turns to 
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The normalized equations for the ion quantum fluid can be written as 
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and the normalized equations for the electron quantum fluid can be written as 
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and the normalized form of the Poisson equation is 
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K-dV EQUATION 
 
To study the nonlinear propagation of the electrostatic perturbation modes in the relativistically magne-tized quantum plasmas 
(under consideration), we will derive the K-dV equation employing the reductive perturbation method (47). So, we first introduce 
the stretched coordinates (Washimi, 1966) as 
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Now, substituting Eqs. (12)-(18) in Eqs. (7)-(ll), and equating the coefficients for the lowest order of  , we obtain the first order 
continuity equations, the z -component of the momentum equations, and Poisson's equation, which after simplification, we can 
write as 
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We define lz = cos ,. where   is the angle between the directions of the wave propagation vector k and the external magnetic 
field B0- The Eq. (23) represents the dispersion relation for the acoustic type electrostatic waves in the degenerate quantum plasma 
under consideration. We can write the first order x— and y—components of the momentum equations as 
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Eqs. (24)-(27), represent the x— and y—components of the ion-electron electric field drift, respectively. Again, substituting Eqs. 
(12)-(18) in Eq. (8) and Eq. (10) and using Eqs. (19)-(27), we obtain the next higher order x-and y—components of the momentum 
equations as 
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Eqs. (28)-(31), denote the y— and x—components of the ion-electron polarization drift, respectively. Further, substituting Eqs. 
(12)-(18) in Eqs. (7)-(ll), we obtain the next higher order continuity equations, the z- component of the momentum equations, and 
Poisson's equation, which can be given as 
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Now, simplifying Eqs. (32)-(36) by using Eqs. (19)-(31), and combining each other, we finally obtain our desired equation in the 
form 
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Eq. (37) is the well known K-dV equation describing the dynamics of the SWs propagating in the degenerate quantum plasma. 
The nonlinear coefficient, A and the dispersion coefficient, B are given as 
 

,
)1(66 32

0
32

0

4321

 hpppe ZabVbaV

LLLL
A






  (38)  
 

,
)1(7272 2222

0
2222

0

54321

 hczpiczpe ZblValV

KKKKK
B






     (39) 
 

Where 
 

),3( 22
0 zpi lVa  

  
),3( 2

0
2

pez Vlb  
 

),27 2323
01 zpe laVL  ),433( 2

0
2
0

43
2  eez RlaL 

 

),1(27 2323
03  hzpi ZlbVL 

 

),1)(433( 2
0

2
0

43
4  hiiz ZRlbL 

 

,4 222
1 cbaK 

  
),1(36 2242

02 zpe laVK  
 

,9 22242
03 cze aHlK  

  
242

04 36 bVK pi
 

),1( 2
zl  

),1( hZ
 

),9 22242
05 czi bHlK  

 
,)1( 3/1hZ
  (40) 

 

Now, to investigate the properties of the El acoustic SWs, we are interested in the SWs solution of the K-dV equation. To do so, 

we introduce another stretched coordinates. 
.0 u
 After the coordinate transformation, the steady state 

)0/(  
 

solution of the SWs can be written as 
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where the amplitude 
AUm /3 0

 and the width, 
./4 01 UB

 It is seen that the quantum parameter H is present in 
,1

whereas m  is totally independent of these parameter. 
 

mK-DV EQUATION 
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The K-dV equation (Eq. (37)) is the result of the second order calculation in the smallness parameter  , where the quadratic 

nature has been revealed by the nonlinear term 
,/)1()1(  A

. 
For plasmas with more than two species as like our system, however, there can arise cases where A vanishes at a particular value 

of a certain parameter  , and Eq. (37) fails to describe nonlinear evolution of perturbation. So, higher order calculation is needed 

at this critical value 
.c 
 For this reason, to derive the mK-dV equation, we apply the following stretched coordinates 

(Washimi, 1966) 
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To the next higher order of  , we obtain a set of equations which after simplification as follows 
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Now, combining Eqs. (60)-(62) after simplifying by using Eqs. (49)-(57), we obtain the well-known mK-dV equation as follows 
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Now, taking the same stretching as like the solution of the K-dV SWs, the stationary SWs solution of Eq. (64) can be directly 
given as 
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where the amplitude, 
CUm /6 0

 and the width, 02 /UB
, where 2   depends H. On the other hand, m  is totally 

independent of these parameter. 
 

DISCUSSION 
 

The properties of the acoustic SWs in degenerate quantum plasmas are discussed in this section numerically. The effects of 
quantum diffraction are related not only in degenerate astrophysical plasmas but also may be meaningful in some dense laboratory 
plasma containing electrons and light ions. in presence of stationary heavy ions.  
 
We emphasize the effects of the propagation angle, quantum pressure, relativistic factors, immobile heavy ions charge state, and 
densities of the plasma components on the acoustic SWs in such degenerate quantum plasmas. For our purpose, we have derived 
the K-dV and 
 

 
 

FIG. 1: Showing the variation of pV
 with   for 

01.00 U
,   = 40, 0e = 1.33, 

29.10 i   and Zh = 2.  

The dotted line for 


 = 1.1, the solid line for 


= 1.2, and the dotdashed line for 


 = 1.3. 
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FIG. 2: Showing the variation of 1 (K-dV) with H for U0 = 0.01. 0e = 1.33, 0i = 1.29,   = 40, 
1hZ

,  


 = 1.1. and   = 0.1. The 

dotted line for 
3.0c , the solid line for 

4.0c , and the dotdashed line for 
5.0c . 

 

 

FTG. 3: Showing the effects of 


 on the K-dV solitary profiles for U0 = 0.01. 0e = 1.33, 0i = 1.29,   = 0.4,   = 40, c  = 0.4, 
1hZ

,  H = 0.3. 

5.2eR and 
2.2iR

. The lower red dotted line for 


 = 1.1. the lower blue solid line for 


 = 1.13, the upper green dotdashed line for 


 = 

1.16, and the upper black solid line for 


 = 1.19. 

 

 

FIG. 4: Showing the effects of Ri on the (K-dV) SWs profiles for U0 = 0.01. 0e = 1.33, 0i = 1.29,   = 0.4,   = 40, 
4.0c  , 

1hZ
, H = 0.3, Re = 2.5, and 


 = 1.2. The dotted line for Ri = 1, the solid line for Ri = 2, and the dotdashed line for Ri = 3. 
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FIG. 5: Showing the effects of c on the mK-dV SWs profiles for U0 = 0.01. 0e = 1.33, 0i = 1.29,   = 0.2,   = 60, 
1hZ

, H = 

0.3, Re = 2.5, Ri = 2.2, and  


 = 1.6. The dotted line for 
3.0c , the solid line for c  = 0.4, and the dotdashed line for 

5.0c . 
 

 

FIG. 6: Showing the effects of  on the mK-dV SWs profiles for U0 = 0.01. 0e = 1.33, 0i = 1.29, c  = 0.4,   = 60, 
1hZ

,  H = 

0.3. 
5.2eR

and 
2.2iR

 and 


 = 1.8. The dotted line for   = 0.1, the solid line for   = 0.2. and the dotdashed line for   =  0.3. 
 

 
 

FIG. 7: Showing the mK-dV SWs profiles for U0 = 0.01. c  = 0.3,   = 0.1,   = 60, 
1hZ

,  H = 0.3. and 


 = 1.16. The solid line for 

non-relativistic case 0( e = 1, 0i = 1, 
0eR

 and 
)0iR

, and the dotted line for relativistic case ( 0e  = 1.33, 0i  = 1.29, 
eR

 2.5, 

and 
iR

 = 2.2). 
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mK-dV equations, and analyzed their stationary SWs solutions based on some typical plasma parameters relevant to different 
astrophysical and laboratory plasma situations existed in some published works. We consider some typical plasma species density 
which is consistent with the relativistic degenerate astrophysical plasmas, e.g., nio = 1.1 × 1029 cm-3, ne0 =  9.1 × 1029 cm-3, nho = 

0.4 × 1030 cm-3, (11, 36, 37, 48) and the other quantum parameters e.g., 


 = 0.1 to 0.9, H = 0.2 to 0.9 (18, 22, 49), and ambient 
magnetic fields ~ 1013G (15, 50). The values of these parameters may change depending on different plasma situations. The 
results, we have found from this investigation can be summarized as follows: 
 

 The effect   on Vp of the El acoustic waves for different values of 


are displayed in Fig. 1. The phase speed of the 

acoustic waves decreases with the increase of . This happens due to the increase of the inertia of the acoustic waves with 

the increase of the value of . It is also observed that with the increase in 


, Vp of the EI acoustic waves increases. 

 The variation of width, 1  of the K-dV SWs with H is depicted in Fig. 2 for different values of c . It is found that as the 

values of both H and c
 increase, 1  of the acoustic SWs decreases significantly. 

 The variation of the K-dV SWs profiles with the 


 (Ri) is shown in Fig. 3 (Fig. 4). It is observed that 
 

 

our plasma system supports both positive (com-pressive) and negative (rarefactive) SWs structure. In case of 


 both amplitude 

and width of the SWs increases with the increase of 


. Increase of 


 means the increase of Fermi energy of the electrons and 

ions. But in case of iR
 both amplitude and width of the SWs decreases with the increase of iR

 (increase of relativistic effects of 
ions). Plasma particles can move freely in the weakly relativistic plasma more than the strong relativistic plasma. 

4. The influences of the c ( ) on the mK-dV SWs profiles is shown in Fig. 5 (Fig. 6). It seems that there is no effect of c  on 

the amplitude of the mK-dV SWs but width decreases with the increase of the c . It is also found that both width and amplitude 

of the mK-dV SWs decrease with the increase of  . This occurs due to the increase of the inertia of the plasma particles. 
5. Fig. 7 compares the the amplitude and width of the quantum El SWs profiles for the relativistic case and the non-relativistic 
case. Plasma particles can move freely in the non-relativistic plasma more than the ultra-relativistic plasma due to the less number 
density of plasma species in non-relativistic case than the ultra relativistic case. Therefore, the amplitude as well as width of the 
SWs are noticeably higher for non-relativistic case than for ultra-relativistic case. The magnitude of the external magnetic field B0 

has no any effect on the amplitude of the SWs but it does have a direct effect on the width of SWs. We found that as the 

magnitude of BO (i.e., p ) increases, the width of SWs decreases, i.e., the magnetic field makes the solitary structures more 
spiky. 
 
We hope that our lower order as well as higher order nonlinear analysis will be helpful for understanding the localized electrostatic 
disturbances not only in the different astrophysical degenerate compact objects (Shapiro, 1983; Garcia-Berro, 2010; Mamun, 
2010)), but also in different dense laboratory plasma nonlinear experiments (Berezhiani, 1992; Murkhmd, 2006). 
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