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Spam detection in emails has been a standard classification problem since decades. But nowadays,
emails are only a small part of our digital conversations. Instant messengers, for example, are a huge
source for spam messages and images these days. This paper proposes an application of deep CNN’s
to help classify these images into three main classes: Important, Acceptable and Spam. Acceptable are
those images which might be irritating, but are not necessarily Spam, e.g. Good Morning messages.
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INTRODUCTION

Every morning, when we check our WhatsApp, we are usually
bombarded with many messages. Some of them are from our
loved ones, while others are of professional importance. But
unfortunately, among these messages are many unwanted
messages, like fake news, product promotions, etc. These
messages disrupt our IM experience and also clog our phone’s
internal storage. I’ve often seen people spending a lot of time
deleting these messages and sorting out the good ones.
Wouldn’t it be great if this tedious task be automated?. That is
precisely what this paper intends tom illustrate. As mentioned
earlier in this paper, classifying emails has been a standard
classification problem for ears. But we are no longer limited to
emails anymore. Spammers have many more ways to target us.
The most popular being WhatsApp, or other instant messaging
services. Also, the messages we receive today, are not just text
messages, where we could use word count, or other such
means to identify spams. These messages are often in the form
of images, which makes the classification task even more
challenging. I seek to solve this problem by leveraging the
power of deep learning techniques, namely, convolutional
neural networks.
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These neural nets have to capacity to learn the hundreds of
thousands of features, and almost intuitively make an
intelligent guess of whether a given image is Spam or not. But
some messages that might get misclassified as spam, may not
necessarily be that bad. That’s why I’ve considered a third
class label, “Acceptable”. Some examples of these acceptable
messages may be the numerous “Good morning” messages that
we may receive. We don’t necessarily want to lose these. I
plan to use optical character recognition to extract text from
these messages, and show the users just this text, so that the
users are not clogged with the images, yet they receive their
messages. The one after explains how [ went about
implementing this Idea.

Objective: The main objective of this paper is to employ
convolutional neural networks to classify IM images into three
main classes, Important, Acceptable and Spam. This is an
example of a multi class classification problem. I could I used
traditional machine learning algorithms to do the job, but the
sheer amount of data seems to show better promise in using
deep learning approaches

Literature Survey: In their paper, Zhao proposed a very
simple deep learning method for classifying images, based on
cascaded PCA, binary hashing, and block-wise histogram
decomposition. Laiming He and Jian gave a novel solution to
mitigating the difficulty faced in training neural networks.



71787

Ashutosh Mahesh Pedneka, Spam detection in im images using convolutional neural networks

The presented a residual learning framework to ease the
training networks that are way deeper than those preceding
them. Multi-column DNN’s have been a great inspiration for
this application as it eased the process of training the network
over image data, as it better leverages the multiple columns
available in 2D data such as images. Dan Ciresanm Meier and
Schmidhuber were the first ones to achieve near human level
benchmarks. I referred their paper from the Cornell University
Library to gain better insight on how Neural networks actually
work. These insights were very useful. Alex, Ilya and Geoffrey
trained large, Deep Conv-nets to classify millions of high-
resolution images in the LSVRC ImageNet training set into
thousands of classes. This was on a whole different scale than
the scope of this paper. Their paper contained a new
regularization method that greatly improved the efficiency of
the network. I referred many other such journals, and I've
sedulously cited all of them in the references section below.

Technologies involved - explanation

Compute Unified Device Architecture (CUDA): In today’s
world, parallel processing and scalable code is no longer a
head turner, but it has evolved to become an absolute
necessity. CUDA, or compute unified device architecture is a
parallel programming platform from Nvidea. It allows users to
parallelize programs, and run them on a GPU. Graphical
processing units have very large potential. CUDA is a parallel
programming platform and programming model developed by
Nvidea corporation. It allows software developers and
researchers to use a CUDA-enabled Graphic processors for
general purpose computing — an approach termed as GPGPU.
(General purpose GPU).

Tensor Flow: Tensor Flow is a system for Large-Scale
Machine learning developed by the Google Brain team.
Pioneered by Martin Abadi, and Paul Barham, it is a machine
learning system that operates at large scale and in
heterogeneous environments. It uses Computation Graphs to
represent the computation. Tensor Flow can be run on CPU’s,
GPU’s, Clusters and even on smartphones. It can sedulously
leverage the power of Nvidea’s CUDA framework. Unlike
core python, Tensor Flow uses a lazy evaluation mode, where
it first just creates the Directed Acyclic graph of the required
calculation. Only when we instruct it to evaluate this graph, it
does the actual computation. This helps to facilitate implicit
parallelism, as different sub-graphs in the DAG can be run on
independent processors. But for developmental purposes, this
can be disables by using the ‘eager’ execution mode.

MATERIALS AND METHODS

In the context of this paper, I’'m scraping sample images from
the internet, and indexing them iteratively, at first, to create my
desired dataset. Once the dataset was ready, then I wrote some
Tensor-flow functions to create Conv-nets that I later used to
create my Image Classification models. I split my data-set into
test and train splits. That followed training this model over the
dataset I had put together earlier. I used Nvidia’s CUDA
architecture for optimized performance. I then tested the
results. Each of these steps are elaborated below: -

Data Acquisition: Every machine learning problem requires
data. For this paper, I needed a labelled dataset of images that
usually circulate on WhatsApp.

Because of the immense fastidiousness of the data, I had to
make my own datasets. For that, I needed to scrape some
images from the internet. In the Implementation section that
follows, I’ve illustrated this process. The next stem after data
acquisition was to label this data.

Labelling: -Since I had collected the data manually, it was
very simple to label them in batches. E.g.,, go to
‘https://www.google.com/ images?/good morning messages’
and scrape the first few images, and label all of those as
‘Acceptable’. Likewise, I scraped the Spam and Important,
respectively. For the important section, I scraped some images
from my own Google Photos, as those would be the kind of
images I would consider important. Also, since I used my own
data, there are no privacy or copyright concerns in any way.

Model Creation and Training: The implementation section
illustrates my code to create the

conv-nets and using them to train images. Then I trained these
models over my dataset. As I mentioned earlier, I used
Nvidia’s CUDA platform and the awesome Tensor Flow
Framework for the above mentioned tasks.

Implementation: This sections consists of the screen captures
and illustrations of the actual implementation. The detailed
workings are explained above.

Data Acquisition: The first phase was to acquire the necessary
data. I scraped the necessary data using the urllib and Beautiful
Soup libraries in python. Here’s the code snippet for the same:

In order to scrape the training data, I created the following
directory structure:

The below snapshot shows some ‘good-morning” images being
scraped into the “acceptable” folder. The program
automatically renames the images for convenience. I scraped
these images from www.sendscraps.com. These images were
used for academic research only. The website contained
multiple pages, so I ran the spider, or the crawler on each of
these pages one after another. The resultant ‘acceptable’
dataset looked as follows: -

In a similar fashion, data for the other two classes was also
acquired. The next step was to actually code the CNNs. This
task, being more computationally expensive, needed to be
carried out on a better platform. I had to switch to the cloud for
this purpose. As mentioned earlier, I utilized GPU processing
using the CUDA framework for faster processing. I transferred
my dataset to Google Drive, as can be seen in the picture
below: -

The following snaps picturise the configuration and hyper-
parameter tuning: -

Loading the data to the notebook. This followed some helper
functions. I’ve avoided adding their snaps as that would
unnecessarily make the paper too long.

After training the network, and testing it with a sample image,
I obtained the following results: -

We are now done using Tensor Flow, so we close the session
to release its resources.
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In [1]: from bs4 import BeautifulSoup
from urllib.request import urlopen
import urllib

def make_soup(url):
“html = urlopen(url).read()
return BeautifulSoup(html)

def get_images(url):

soup = make_soup(url)

“#this makes a List of bs4 element tags

«images = [img for img in soup.findAll('img')]

print (str(len(images)) + "images found.")

print ('Downloading images to current working directory.')

#compile our unicode List of image Links

image_links = [each.get('src') for each in images]

«for each in image_links:
filename=each,split('/')[-1]
“urllib.request.urlretrieve(each, filename)

return image_links

In [3]: | #Scraping acceptable images, say “Good-morning" images
get_images('https://www.sendscraps.com/good-morning.html")

Share View

> This PC » Documents > CMN-lmage-Classifier > src > data > train

L]
acceptable important spam
JNes
2 (S
== R
» (30 Home CNN- & Scaper X train-n Pythor S plop + . N
e Home  Share  View
c 0O @ ebooks/CNN-Image-Classifier/sre/data/train/acceptable/Scrap... ¥ & « v A 0« train ? accepta.. > v O | Searchacceptable P
- Jupyter Scraper Lest Checkpoint 2 minutes ago (unsaved changes) ﬂ Logout sk Quick access
s Desktop * & o
Fle  Edit  View Insert ol Kemel  Widgels  Help uste | Python 3 © b i # knﬁ
8 2} = [@ Documents  #
B+ x| & B t,"' HRun !c » ’f’ v om ) ,  dpynbcheckpoin on
urllib,request.urlretrieve(each, filename) a i Pictures 15
return image_links game of thrones 52
- Shared Drive (5})
tokyo ghoul re - sez
Tn [3]: #Seraping acceptable images, say "Good-morning” images
get_images( ' https://www.sendscraps.com/good-morning.html') wallpapers
c: \users\ashu\appdata\local\programs\python\python37-32\1lib\site-packages\bsa\__init_ .py:181: Use & OneDiive
rddarning: No parser was explicitly specified, so I'm using the best available WTML parser for this Attachments
system (“html51ib"), This usually isn't a problem, but if you run this code on another system, or
in a different virtual environment, it may use a different parser and behave differently. Rt
Music
The code that caused this warning is on line 193 of the file ¢:\users\ashu\appdata\local\programs Picti
\python\python37-32\1ib\runpy.py. To get rid of this warning, change code that looks like this: e
Professional
Beaut ifulSoup(YOUR_MARKUP})
= This PC
to this: 30 Objects
BeautifulSoup(YOUR_MARKUP, "html51ib") = Deskiop
ki k 14| Documents
markup_type=markup_type)) & Downloads
120images found. ) ) » Music
Downloading images to current working directory.
lie Pictures
out[3]: ['https://imgl.sendscraps.com/se/008/072.5pg", < H Videos
In [ ]: & Local Disk (C)
£3 CD Drive (D)
In [ ] - Shared Drive (5}
- W Network
M personal image_...targz Show all X
persanal_image._...tar.g —

H O Type here to search 8 . ® = - w3
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In [*]:  #Scraping acceptable images, say "Good-morning” images
get_images('https://www.sendscraps.com/good-morning-2.html")

c:\users\ashu\appdata\local\programs\python\python37-32\1lib\site-packages\bs4\ init .py:181: UserWarning: No parser was expl
icitly specified, so I'm using the best available HTML parser for this system ("html51ib"). This usually isn't a problem, but
if you run this code on another system, or in a different virtual environment, it may use a different parser and behave differ
ently.

The code that caused this warning is on line 193 of the file c:\users\ashu\appdata\local\programs\python\python27-32\1ib\runp
y.py. To get rid of this warning, change code that looks like this:

BeautifulSoup(YOUR_MARKUP})
to this:
BeautifulSoup(YOUR_MARKUP, "html51ib™)

markup_type=markup_type))

12eimages found.
Downloading images to current working directory.

In [*]: #Scraping acceptable images, say "Good-morning” images
get_images('https://www.sendscraps.com/good-morning-3.html")
c:\users\ashu\appdata\local \programs\python\python37-32\1ib\site-packages\bs4\ init .py:181: UserWarning: No parser i
icitly specified, so I'm using the best available HTML parser for this system ("htmls5lib"). This usually isn't a probl
if you run this code on another system, or in a different virtual environment, it may use a different parser and behav
ently.

The code that caused this warning is on line 193 of the file c:\users\ashul\appdata\local\programs\python\python37-32\1:
y.py. To get rid of this warning, change code that looks like this:

BeautifulSoup(YOUR MARKUP})
to this:
BeautifulSoup(YOUR MARKUP, "html51ib")

markup_type=markup_type))

120images found.
Downloading images to current working directory.
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Picture Tools
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[2] inport o=
import glob
inport numpy as np
import cvl
from sklearn,utils isport shuffle

def losd_train(train_path, imege_sire, classes):
images = [1
labels |
ids

print('Resding training images’)
for £1d in classes; wssuming doka directory has s separste folder for esch cls
index = classes.index(fld)
print(*Loading {} files (Index: {})'.format(fld, index))
path = os.path.join(train_path, fld, '*g')
files = glob.glob(path)
for fl in files:
image = cv2.imread(f1)
image = cv2.resize(image, (image_size, image_size), cv2.INTER_LINEAR)
images . append(image)
label = np.zeros(len(classes))
label[index] = 1.0
labels.append(label)
flbase = os.path.basename(f1)
ids.append(flbase)
cls.append(fld)
images = np.array(images)
labels = np.array(labels)
ids = np.array(ids)
e TS)

and thet sach folder is nemed after the o

return images, labels, ids, cls

def load_test(test_path, image_size):
path = os.path.join(test_path, '*g')
files = sorted(glob.glob(path))

° # Convolutional Layer 1. H
filter_sizel = 3
num_filtersl = 32

# Convolutional Layer 2.
filter size = 3
nun_filters2 = 32

# Convolutional Layer 3.
filter size3 = 3
nun_filters3 = 64

# Fully-connected layer.
fc_size = 128 # Nurber of neurons in fully-connected layer.

# Number of color channels for the images: 1 channel for gray-scale.
nun_channels = 3

# image dimensions (only squares for now)
img_size = 128

# Size of image when flattened to a single dimension
img_size_flat = img_size * img_size * num_channels

# Tuple with height and width of images used to reshape arrays.
img_shape = (img_size, img_size)

# class info
classes = ['important’,'spam’,acceptable] ]
nun_classes = len(classes)

# batch size
batch_size = 32

# validation split
validation_size = .16

# how long to wait after validation loss stops improving before terminating training
early_stopping = None # use None if you don't want to implement early stoping

train_path = 'data/train/’
test_path = 'data/test/test/’
checkpoint_dir = "models/"
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data =

read_train_sets(train_path, img_size, classes, validation_size= valldatlon 51ze) :

test images, test ids = read test set(test path, img size)

Reading training images

Loading spam files (Index: ©)
Loading important files(Index: 1)
Loading acceptable files (Index: 2)

[10] print(”Size of:")

print("- Training-set:\t\t{}".format(len(data.train.labels)))

print("- Test-set:\t\t{}".format(len(test_images)))

print("- Validation-set:\t{}".format(len(data.valid.labels)))

Size of:

- Training-set: 12432
- Test-set: 95123
- Validation-set: 96633

optimize(num_iterations=9000) # We performed 100@ iterations above.

Epoch 3 --- Training Accuracy: 78.1%, validation Accuracy: 68.8%,
Epoch 4 --- Training Accuracy: 81.2%, validation Accuracy: 84.4%,
Epoch 5 --- Training Accuracy: 78.1%, validation Accuracy: 75.0%,
Epoch 6 --- Training Accuracy: 78.1%, Validation Accuracy: 78.1%,
Epoch 7 --- Training Accuracy: 84.4%, validation Accuracy: 81.2%,
Epoch 8 --- Training Accuracy: 84.4%, validation Accuracy: 81.2%,
Epoch 9 --- Training Accuracy: 87.5%, validation Accuracy: 81.2%,
Epoch 1@ --- Training Accuracy: 9@.6%, Validation Accuracy: 78.1%
Epoch 11 --- Training Accuracy: 90.6%, Validation Accuracy: 78.1%
Epoch 12 --- Training Accuracy: 90.6%, Validation Accuracy: 81.2%
Epoch 13 --- Training Accuracy: 93.8%, Validation Accuracy: 84.4%
Epoch 14 --- Training Accuracy: 93.8%, Validation Accuracy: 78.1%
Epoch 15 --- Training Accuracy: 93.8%, validation Accuracy: 65.6%
Epoch 16 --- Training Accuracy: 93.8%, Validation Accuracy: 87.5%,

Time elapsed: 1:82:12

validation Loss: ©.539
validation Loss: ©.473
validation Loss: ©.410
validation Loss: ©.427
validation Loss: ©.495
validation Loss: ©.468
validation Loss: ©.485
validation Loss: ©.456
Validation Loss: ©.609
Validation Loss: ©.501
validation Loss: ©.512
validation Loss: ©.544
validation Loss: ©.893
Validation Loss: ©.449

print_validation_accuracy(show_example_errors=True, show_confusion matrix=True) |

Accuracy on Test-Set: 79.4% (3177 / 4000)

We are now done using TensorFlow, so we close the session to release its resources.

Indented block

©  sessionclose()

Observation: It can be clearly seen that the accuracy score
varies from data point to data point. For some inputs the
accuracy rose up to even 90%, while others were trammeled to
only 70%. Computing 16 Epochs took around 1 minute. The
overall accuracy was seen to be 79.4%. The results were
indeed promising. After certain refinements, it can definitely
be used in production.

Conclusion

This paper concluded that convolutional neural networks can
be successfully deployed for image spam detection. IM and
other social networks are nowadays plagued with many spam
messages. It would be of paramount significance to the society
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