

Availableonlineathttp://www.journalcra.com

International Journal of Current Research Vol. 10, Issue, 07, pp.72042-72051, July, 2018 INTERNATIONAL JOURNAL OFCURRENTRESEARCH

RESEARCH ARTICLE

DIMENSIONING OF A WATER PUMPING SYSTEM BY THE GENETIC ALGORITHMIC METHOD

*Guy Clarence Sèmassou, Jean-Louis Fannou, Valery Doko, Emile Sanya, Vianou, A.

Laboratory of Applied Energetic and Mechanics (LEMA), Polytechnic School of Abomey-calavi (EPAC), University of Abomey-Calavi (UAC), Benin

ARTICLEINFO

ABSTRACT

Article History: Received 24th April, 2018 Received in revised form 19th May, 2018 Accepted 27th June, 2018 Published online 31st July, 2018

Key Words: Wind Turbine, Optimization, Motor-Pump model,

Motor-Pump model, Desirability, Objective Function, Genetic Algorithm. This paper presents the design of a wind pumping system coupled to a reservoir of water storage. This work has been done with the HOGA program (Hybrid Optimization by Genetic Algorithms). Different objective functions used in the design process are the Loss of Power Probability (LPSP) concept for the reliability, the Life Cycle Cost (LCC) for the economic evaluation and CO₂ emissions of life cycle on the production of the various system components. With the presented model, the optimization of the design of wind pumping system can be realized technically, economically and environmentally, while ensuring the needs of the consumer without interruption. Design variables used are the wind turbines number (N_w), the type of wind (T_w), the tank number (N_{tank}), the type of tank (T_{tank}), type mast (T_{tower}) and total head (T_{head}), that is to say the type of well. A case study is conducted to analyse one wind turbine pumping projet, which is designed to supply drinking water in a rural community located at Sèmè-Kpodji, Benin (6°22'N, 2°37'E, 7m).

Copyright © 2018, Guy Clarence Semassou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Guy Clarence Sèmassou, Jean-Louis Fannou, Valery Doko, Emile Sanya, Vianou, A. 2018. "Dimensioning of a water pumping system by the genetic algorithmic method", International Journal of Current Research, 10, (07), 72042-72051.

INTRODUCTION

Water is a vital element and covers about 70% of the surface of the planet. It is used to supply drinking water for people, livestock, irrigation, etc. The alarming deterioration of the water quality and the growing inequality of water resources coupled with reduced rainfall in many arid countries pose serious problems in terms of health, urban planning, economics, brief development. Today, many African countries are experiencing a great crisis of drought. Faced with this situation, a question arises: how to power these water populations, whose absence is a factor of the under development? Ground waters seem to be the only alternative to this dilemma; but all is not enough to have groundwater; it is indispensable to develop technology for pumping the water extraction. Pumping water has become in our days a major issue for the improvement of living conditions and socioeconomic development of rural communities. Several technologies make it possible today to bring a valid, durable and clean solution. Pumping systems are distinguished according to their energy source: Manual - pedal - powered by animal traction - wind - a diesel generator respectively gasoline - photo voltaics.

However, pumping systems for wind, photovoltaics are becoming more attractive and compete from cost perspective and performance with systems using conventional energy sources. Systems powered by renewable energy sources (solar and wind) are particularly useful in remote areas where fuel supply is problematic. Benin has in its southern part some wind corridors that are conducive to the development of wind mills of pumping. In the literature, several studies have been made in the field of water pumping for water supply of the population. Thus, some authors have developed physical models of various components of a hybrid energy system or not and others have developed a methodology for estimating the economic and energy cost over the life cycle of subcomponents of these systems (Badescu, 2003; Zafirakis et al., 2007; Hamidat, Hagj Arab and Boukadoum, 2005; Fanx, 1979; Chow et al., 2006; Odeh, Yohanis and Norton, 2010; Borowy and Salameh, 1996; Ai et al., 2003, Kaabeche et al., 2006; Markvart, 1996, Yang et al., 2008; Ekren and Ekren, 2010; Bernal-Augustín et al., 2006; Dufo-López and Bernal-Augustín, 2008; Yang et al., 2003, 2007; Kaabeche et al., 2010; Diaf et al., 2008a; Deshmukh and Deshmukh, 2008; Hamidat and Benyoucef, 2008; Rajendra and Natarajan, 2006; Khan and Iqbal, 2005; Koutroulis et al., 2006; Borrowy and Salameh, 1997; Ofry and Brauntein, 1983). With present design methods, the size of the tank is often coarsely estimated. Thus, in the case of too small a tank, there has been overflow of water. As against, over-sized with a reservoir, may be present in construction costs too high. In this paper the

^{*}Corresponding author: Guy Clarence Sèmassou,

Laboratory of Applied Energetic and Mechanics (LEMA), Polytechnic School of Abomey-calavi (EPAC), University of Abomey-Calavi (UAC), Benin. **DOI:** https://doi.org/10.24941/ijcr.31675.07.2018

optimization of a Wind system, with water storage tank (see Fig. 1) to supply the electrical demand for water pumping in a small town located near Cotonou (Benin) is described. The optimization is based on the concepts of minimization of LPSP (the power supply loss probability), the life cycle cost (LCC) for the economic and CO_2 emissions. The NSGA-II algorithm, evolutionary genetic type was used in order to determine the set of optimal compromise solutions, which are ranked in descending order according to their desirability. The method used is declined in four steps. Firstly we proceed to the analysis of the water needs of the locality, then draw up models of the various components of the system, then defines the performance criteria and the different rates of satisfaction and finally proceeds to the classification and selection of solutions.

MATERIALS AND METHODS

Consumption profile adopted and Wind Data: Water requirements of the selected location are not negligible. The final water uses distribution obtained in this study is the following: faucets (39.20%), toilets (22.2%), showers (19.9%), clothes washers (9.7%) and finally leaks (8.9%) (See Fig.1a).

Figure1. Water use: (a) Water uses distribution. (b) Hourly water consumption profile through the day

Consumption is not constant every day of the year, it fluctuates according to the months of the year, according to the weeks of the month, the days of the week and different times of the day. This variation reflects in the time the rhythm of human activities. The daily water consumption of the tow is $30m^3/day$ (we have considered that it is the same for all the day in the year), and the hourly water consumption profile through the day is show in Figure1b. The proposed method is applied to a wind system designed to meet the daily water consumption needs of rural household. Data on wind speed from the meteorological station in Cotonou, located a kilometer trantaine of the site selected in this work. In addition, these

data are measured at 10 m from the ground and made an extrapolation using empirical models in the literature (Equation 1) to obtain the wind speed at 50 m above the ground. In Figure 2a are represented Hourly data of the wind speed at 10 m from the ground on one year and Figure 2b are represented Hourly data of the wind speed at 10 m and 50 m from the ground over one day.

Figure 2. Variation of wind speed: (a) Speed on a Year. (b) Speed on a day to 10mand 50m above the ground.

The design variables needed to determine solutions are summarized in Table 1.

Table 1. Design variables

Design variables	Nomenclature	Range	Component type considered
Wind turbine number	Nw	1-20	-
Tank number	N _{tank}	1-10	-
Type of wind turbine	Tw	1-2	600 W - 1300 W
Type of tank	T _{tank}	1-2	$20 \text{ m}^3 - 50 \text{ m}^3$
Type of tower	T _{tower}	1-3	50 m - 60 m - 70 m
Type of well	Thead	1-3	30 m - 50 m - 70 m

Description of the pumping system: To meet these needs, wind turbines can be used as an energy source for pumping water. The system used herein comprises a turbine, a water source, a water tank and a subsystem pumping (pump and motor) (see Fig. 3). For the systems of wind pumping operating over wind, the storage of water in the tanks is the solution most adopted compared to electrochemical storage in the batteries. Instead of storing the surplus of energy produced in expensive accumulators, this is the surpluses of pumped water which are stocked in a tank. This type of system has obtained excellent performances in real operating conditions.

Wind pumping system allows the conversion of mechanical energy into electrical energy through a rotor coupled to a generator, which controls the pump AC rated power 1000 W

Fig.3. Configuration of a wind turbine powered pumping system

Wind turbine system model: Power output of wind turbine generator at a specific site depends on wind speed at hub height and speed characteristics of the turbine. Wind speed at hub height can be calculated by using power-law equation (Patel, 1999):

$$V_2 = V_1 \left(\frac{Z_2}{Z_1}\right)^{\alpha} \tag{1}$$

Where

 V_1 and V_2 are the wind speed at hub and reference height Z_2 and Z_1 and is roughness coefficient whose value generally varies between 0.1 and 0.25 depending on the site. The oneseventh power law (0.14) is a good reference number for relatively flat surfaces such as theopen terrain of grasslands away from tall trees or buildings. Choosing a suitable model is veryimportant for wind turbine power output simulations. The most simplified model to simulate power output of a wind turbine (Lu *et al.*, 2002) can be described by:

$$\begin{bmatrix} P_{W} = \begin{cases} P_{r} * \frac{V - V_{c}}{V_{r} - V_{c}} & ; & V_{c} \leq V \leq V_{r} \\ P_{r} & ; & V_{r} < V \leq V_{f} \\ 0 & ; & V \leq V_{c} \text{ and } V \geq V_{f} \end{bmatrix}$$
(2)

where

 P_r is the rated electrical power; V_c is the cut-in wind speed; V_r is the rated wind speed; and V_f is the cut-off wind speed. The two turbines used in this study are of IMEX-Blade usingMaglev technology. Their characteristics are summarized in Table 9.

Pumping subsystems model: To determine the power of a submerged wells or drilling pump or surface pump, it is necessaryto know the total head well as flow that we would like to tap. Thus, whereas in a wind pumpingsystem, the required electrical power output to the motor-pump combination can be expressed (Clarck *et al.*, 1992; Bouzidi *et al.*, 2006; Hadj Arab *et al.*, 2005):

$$P_L(t) = \frac{\rho g Q H_t}{3600 \eta}$$

Where Q is the ouput water rate (m^3/h) , ρ is the density of water (kg/m³), g is the acceleration due to gravity (m/s²), 3600 is the number of second per hour, H_t is total head (m) and η is the power efficiency of the motor-pump combinaison.

The hourly consumption corresponding energy (Wh) of the pump is given by:

$$E_L(t) = P_L(t) \Delta T \tag{4}$$

Water storage tank model

The state of charge of a tank depends on wind production and water needs of users. Thus, the energy stored in the tankat a time t can be expressed by the following equation:

Water storage charging,

$$E_{\tan k}(t) = E_{\tan k}(t-1) + \left(E_{W}(t) - \frac{E_{L}(t)}{\eta_{conv}}\right) \times \eta_{\tan k}$$
(5)

Water storage discharging,

$$E_{\tan k}(t) = E_{\tan k}(t-1) + \left(\frac{E_L(t)}{\eta_{conv}} - E_W(t)\right)$$
(1)
(6)

Where $E_{tank}(t)$ and $E_{tank}(t-1)$ the energy stored in the tank (Wh) at the time t and t-1, are respectively; $E_{W}(t)$ is the total energy generated by wind turbines after energy loss of controller (Wh); $E_{L}(t)$ is the energy hydraulic demand at the time t (Wh); η_{conv} and η_{tank} are the conversion efficiency and charge efficiency of water storage tank, respectively, η_{tank} is taken equal to 1.At any time t, the charged quantity of the water storage tank is subject to the following two contraints:

$$0 \le E_{\tan k}\left(t\right) \le E_{\tan k,\max} \tag{7}$$

Where $E_{\tan k. \max}$ is the maximum storage capacity of the tank.

The functioning of tank is similar to that of a battery in an ordinary wind system. Thus, when the production of win(2)s sufficient water needs are satisfied and the rest of the energy is used to fill the tank. The water capacity of the tank is determined from the equation (5). In the case where the production of wind is not enough, the tank is loaded and its capacity is determined from equation (6).

Criteria for evaluating system performance

Definition of criteria: The choice of criteria is a crucial step in the formulation of an optimization problem. Thus, the criteria necessary for the evaluation of system performance is related to aspects economic, environmental and reliability.

Models criteria:The randomness that characterizes the production system has required its analysis on all hislife. Thus, we took into account the costs of energy and economic life cycle of the system.

The economic model based on the LCC concept:Life cycle cost (LCC) includes the cost of initial investment, the cost of replacing thecomponent, the cost of maintenance and repair and the cost of downtime. For a component of the system i, the economic cost of the life cycle (during 25 years) can be expressed by thefollowing equation (Navaeefard *et al.*, 2010; Dehghan *et al.*, 2009; Khan *et al.*, 2005):

$$LCC_{i} = N_{i} \left(CI_{i} + CR_{i} \cdot K_{i} + CMR_{i} \cdot PWA(ir, R_{v}) \right)$$

$$\tag{8}$$

With:

$$K_{i} = \sum_{n=1}^{y_{i}} \frac{1}{(1+ir)^{nL_{i}}}$$
(9)

$$y_i = \left(\frac{R_v}{L_i}\right) - 1$$
 If R_v is dividable to L_i (10)

$$y_i = \frac{R_v}{L_i}$$
 If R_v is not dividable to L_i (11)

$$PWA(ir, R_v) = \frac{(1+ir)^{R_v} - 1}{ir(1+ir)^{R_v}}$$
(12)

Where N_i is number of component i, CI_i is the initial investment cost, CR_i is thereplacement cost, CMR_i is the cost of maintenance and repair of component i. PWA and K_i are annual and single payment present worth factors, respectively. y_i and L_i are number of replacements of component i and its life time. ir is real interest rate, R_v is project's lifetime.

We then deduce the total economic cost of the life cycle of the system:

$$C_{total} = \sum_{i} LCC_{i}$$
(13)

In this study, we chose ir = 6% and $R_v = 25$ ans. The economic costs of the different components of the system are summarized in Table2.

Table 2 : Components specifications(Thiaux, 2010; Khan *et al.*, 2005; Navaeefard *et al.*, 2010; Yang *et al.*, 2007; Yang *et al.*, 2008; Bakelli *et al.*, 2011)

Component	CI	CR	CMR	Efficiency (%)	Life (yr)
Wind turbine	2 US\$/W	2 US\$/W	0.02 US\$/W/yr	-	25
Water tank	0.55 US\$/m ³	0.55 US\$/m ³	0.0055 US\$/m ³ /yr	100	25
Motor pump	2.73US\$/W	2.73US\$/W	0.08 US\$/W/yr	45	10
Converter	0.7US\$/VA	0.7US\$/VA	0.007US\$/yr	90	15
Tower	250 US\$/m	250 US\$/m	6.5 US\$/m/yr	-	25
Water drilling	0.27 US\$/m	0.27 US\$/m	0 US\$/m	-	25

Gross energy requirement: The life cycle analysis is a tool for decision support in eco-design for evaluating the environmental impact of the system, from raw material extraction to end of life system. The indicator chosen in this study is the Gross energy requirement (GER). This cost represents the total primary energy required for the manufacture, maintenance, recycling and transport to the place of use of the system. For an autonomous wind system, the overall energy cost is as follows:

$$GER_{Total} = N_{W}.P_{n}.GER_{W}.DV_{W} + N_{tank}.E_{tank,max}.GER_{tank}.y_{tank}.DV_{tank}$$

$$+ P_{n conv}.GER_{conv}.PV_{conv}.FGER_{tank}.H$$
(14)

Where GER_{total} is primary energy cost of the system, GER_W is primary energy cost, P_n is rated power, DV_W is the life, of the wind. GER_{tank} is primary energy cost, DV_{tank} is the life, y_{tank} is number of replacements, of the water tank. GER_{conv} is primary energy cost, DV_{conv} is the life, y_{conv} is number of replacements, of the converter. GER_{tower} and *H* are primary energy cost and height of the mast, of the wind, respectively.

In relation (14), we did not take into account the primary energy of the motorcycle pump due to lack of data.

Life cycle CO_2 emissions: Energy consumption during the implementation of the system generates CO_2 emissions can also be evaluated as follows:

$$GES_{Total} = N_{W}.P_{n}.GES_{W}.DV_{W} + N_{tan k}.E_{tan k, max}.GES_{tan k}.y_{tan k} + P_{n,conv}.GES_{conv}.y_{conv}.DV_{conv} + GES_{tower}.H$$
(15)

Where GES_{Total} is total CO₂emissions of system, GES_W is CO₂ emission from wind, GES_{tank} is CO₂ emission from water tank, GES_{conv} is CO₂ emission from converter, GES_{tower} is CO₂ emission from tower.

In relation (15), due to a lack of data, the CO_2 emission relating to the manufacture of the motorcycle pump is not taken into account Table 3 shows the calculation results for the energy consumption and CO_2 emissions during system equipment manufacture. These are the numerical values per unit capacity per year.

Table 3. Energy consumption and CO₂ emissions in the system equipment manufacturing (Kemmoku *et al.*, 2002, Alsema *et al.*, 2006; Thiaux, 2010; Madam, 2003)

Components	Facility energy	CO ₂ emissions
Wind turbine	0.215kWh/W.yr	69 g CO ₂ /W.yr
Water tank	445 kWh/m ³ .yr	34000 g CO ₂ /m ³ .yr
Converter	0,4 kWh/VA.yr	12,5 g CO ₂ /VA.yr
Tower	7.2 kWh/m	5.9 gCO ₂ /m

Loss power supply probability: Because of the intermittent wind speed characteristics, which highly influence the energy production from the system, power reliability analysis is usually considered as an important step in any such system design process. There are a number of methods used to calculate the reliability of the systems. The most popular method is the loss of power supply probability (LPSP) method. The LPSP is the probability that an insufficient power supply results when the system (wind power and energy storage) is not able to satisfy the load demand. The design of a reliable stand-alone wind system can be pursued by using the LPSP as the key design parameter. For an analysis period T (1 year in this study), the LPSP is the ratio of the sum of all values of energy loss LPS for the same period of the energy required.

The loss of energy is expressed by (Bogdan and Salameh, 1997):

$$LPS(t) = E_{L}(t) - (E_{W}(t) + E_{\tan k}(t-1))\eta_{conv}$$
(16)

LPSP is expressed by:

$$LPSP = \sum_{t=1}^{T} LPS(t) / \sum_{t=1}^{T} E_{L}(t)$$
(17)

Models of the rates of satisfaction: The different criteria used in this study are not the same size. To solve this problem of scaling, desirability functions for transforming the variables dimensionless criteria are tapped. But the choice of a desirability function depends on the requirements of the study to be conducted in our case, all criteria are to minimize as shown in Table 6. For this purpose, the function of desirability of Harrington is used (Sebastian *et al.*, 2010):

$$d(Y_m) = \exp(-\exp(\beta + \alpha . Y_m)) \operatorname{avec}$$

$$\alpha = \frac{\ln(\ln(0,01)/\ln(0,99))}{AUC - USL},$$

$$\beta = \ln(-\ln(0,99)) - \alpha . USL$$
(18)

Where disthed esirability associated with the criterion Y_m , AUC is the absolute uppercut off, USL is the upper soft limit for the criterion. Levels of criteria are summarized in Table4.

Criteria	Aim	USL	AUC
CI	Minimize	100	50000
CR	Minimize	100	50000
CMR	Minimize	418	800
LPSP	Minimize	0	60 %
GER	Minimize	957766085	$1.0246*10^9$
GES	Minimize	723597795	5.8365*10 ⁹

Table 4. Levels of criteria

Then, the criteria are aggregated according the aggregation method based on weighted geometric mean of the functions of desirabilities (Derringer *et al.*, 1980):

$$DOI_k = \prod_{r=1}^q d_r^{\nu_r} \tag{19}$$

Where DOI_k denote the indices of desirability and B the weights relating to the criteria. DOI_1 is the index relating to the economic shutter, DOI_2 is related to the reliability of the system, DOI_3 is related to the environmental aspects.

Desirability indices obtained are aggregated according the same principle to lead to the global objective function:

$$OF = \prod_{k=1}^{3} DOI_{k}^{w_{k}}$$
(20)

Where W_k denote the weighting coefficients concerning index of desirability.

The weights used are essential because they represent the wishes of the user in the implementation of the wind system. The values of these weights are summarized in Tables 5, 6 and 7.

Table5. Weight of the indices of desirabilities

	DOI_1	DOI ₂	DOI ₃	
Weight (%)	22.55	67.38	10.07	

Table 6. Weight-related criteria DOI₁

Criteria	CI	CR	CMR	
Weight (%)	43.41	34.54	22.05	

Table 7.Weight-related criteria DOI₃

Criteria	GER	GES	
Weight (%)	60.99	39.01	

Optimization method used: The optimization of the dimensioning of wind turbine system is a multi-objective optimization. Indeed, the cost of the system (whether economic or energy) should be minimal while providing consumers with quality electricity supply the best possible. The number of variables is important, our choice fell on a genetic algorithm called NSGA-II (« Nondominated Sorting Genetic Algorithm II ») (Deb, 2009). This algorithm is called evolutionary since it refers to the theory of biological evolution. It is a multiobjective algorithm under constraints, based on a comprehensive approach to optimization in the sense that the exploratory nature of the algorithm will allow us to get the optimum sweeping wide spectrum of possibilities offered by the range of variation of the design variables. The main parameters of this algorithm are:

- Number of generations $N_G = 50$
- Number of individuals per generation $N_{ind} = 100$
- Design variables (Table 1)
- Probability of crossover $P_c = 0.80$
- Mutation probability $P_m = 0.05$

The algorithm used to evaluate the performance of each individual by calculating the objectives, constraints specific to this individual and the global objective function after taking into account all the steps of the algorithm (crossover and mutation). In this study, six criteria are considered. These are:

- Minimization of all criteria under DOI₁ (CI, CR, CMR);
- Minimization of the criterion under DOI₂ (LPSP);
- Minimization of all criteria under DOI₃ (GER, GES).

Thus, for different sets of combination of design variables, we determine all the corresponding objective functions overall.100 solutions candidates in total are obtained that we classify by decreasing order according to their corresponding rate of satisfaction. After modeling the problem in our approach to optimize multi-objective can be summarized as follows:

Find
$$x = [N_W, N_{\tan k}, T_W, T_{\tan k}, T_{tower}, T_{head}]^T$$

Which minimizes $OF(x) = \{CI(x), CR(x), ..., GES(x)\}$

Subject to $100 \le CI(x) \le 50000$ $100 \le CR(x) \le 50000$

$$723597795 \le GES(x) \le 5.8365 * 10^9 \tag{21}$$

$$\begin{split} &1 \leq N_W \leq 20 \\ &1 \leq N_{tank} \leq 10 \\ &1 \leq T_W, T_{tank} \leq 2 \\ &1 \leq T_{tower} \leq 3 \\ &1 \leq T_{head} \leq 3 \end{split}$$

N°	N_W	N _{tank}	T_{W}	T _{tank}	T _{tower}	Thead	CI	RC	MRC	GER	GES	LPSP (%)	OF
1	17	2	1	1	1	1	34546	3803	609.32	963380185	1.165x10 ⁹	7.52	0.9512
2	6	2	2	1	1	1	29746	3803	561.32	963367285	1.161x10 ⁹	16.38	0.9424
3	15	3	1	1	3	2	37159	3803	715.43	968936379	1.588x10 ⁹	6.27	0.9419
4	13	1	1	1	2	1	32235	3803	626.21	957804857	736017854	16.11	0.9403
5	14	7	1	1	2	2	33503	3803	638.87	991183082	3.2871x10 ⁹	4.43	0.9390

Table 8. Characteristics of the ten best solutions

Figure 4. Evolution of energy: (a) Called energy and energy produced by all the wind. (b) Variation of the charge state of the tank

Figure 5. 3D representation: (a) Different combinations of wind and tanks for different values of IC. (b) Different combinations of wind and tanks for different values of LPSP

Figure 6. Evolution of the objective functions based on combinations of design variables: (a) Desirability index related to the economic shutter. (b) Desirability index related to the reliability of the system

Thus, for different sets of combination of design variables, the corresponding global objective functions are determined. The candidate solutions obtained are ranked in descending order according to their corresponding satisfaction.

RESULTS AND DISCUSSION

To check the status of operation of wind pumping system designed from models of the various constituent components, a simulation was achieved over three days. For this purpose a wind pumping system consisting of 20 turbines each rated power 1300 W, coupled to 10 tanks of rated capacity $50m^3$ each is considered. The mast height is 70 m and the total head is 70 m. On Figure 4 (a), are superimposed the curves representing the load and the power produced by the entire wind turbine, respectively. From the observation of this figure, we see that the power produced by wind turbines is not regular and adjustable at will according to the needs of the user. For example, the maximum instantaneous power demand is 1272 W at 7 hours while the production of wind turbines is

only 26 W at this precise moment. So the phase shift between wind power and water consumption does not favor the optimization of wind nor water autonomy. As shown in Figure 4 (a), a significant proportion of wind power is not in line with the consumption. It is therefore necessary to add a wind system storage tanks in this case so that they can return the stored energy when the wind will not be able to cover the needs of the user. On Figure 4 (b), the variation of the charge state of the tanks a function of time well as the load and the power produced by wind turbines were simulated. The simulation was started with initially empty tanks. In times of strong wind (12:00 h to 19:00), wind turbines it possible to supply the consumer and fill the tanks. During periods of low wind (20:00 h to 30:00), wind power is insufficient and these are the tanks ensure the cover of the needs. Figure 5 shows the 3-D representation for various combinations of wind turbines and tanks for different values of IC and GER. For this purpose a wind turbine rated power 1300 W and a tank nominal capacity 50m³ are chosen. The height of the mast and the total head are fixed at 70 m.It is found that the greater the number of wind turbines and tank increases, IC increases (Figure5 (a)). It is the same for GER (Figure 5 (b)).Desirability indices related respectively to economic criteria and system reliability are shown in Fig. 6. We note that the maximum DOI_1 is 0.9690 (see Fig. 6 a) and the associated optimal configuration corresponds to 1 wind turbines of 1300 W, 9 tanks of 20 m3 with a mast height. Desirability indices related respectively to economic criteria and system reliability are shown in Fig. 6. We note that the maximum DOI_1 is 0.9690(see Fig. 6 a) and the associated optimal configuration corresponds to 1 wind turbines of 1300 W, 9tanks of 20m³ with a mast height of 50 m and a total head of 70 m; which corresponds to a ratio of 7 W/m^3 . Whereas the maximum DOI₂ is 0.9909(see Fig. 6 b) and the associated optimal configurationcorrespondsto19 wind turbines of 1300 W, 14tanksof 20m³, with a mast 60 m and a total head of 70 m, which corresponds to a ratio of 88 W/m³. A similar representation is made in Fig. 7.

The maximum value DOI_3 is 0.9899(see Fig. 7 a) and the associated optimal configuration is 12 wind turbines of 600 W, 1tank of 20 m³ with a mast 70 m and a total head of 30 m; which corresponds to a ratio of 60 W/m^3 . Obviously, the three indices of desirability not lead to the same optimal configuration. Thus, the global objective function after aggregation index of desirability and shown in Fig. 7 b has the maximum value 0.9512. Figure 8, we selected the contours for which you want to display the value. At this optimal configuration corresponds 17 wind turbines rated power 600 W, 2 tanks of 20 m³ capacity, a mast height of 50 m and a total head 30 mins a ratio of 255 W/m³. Figure 9 shows the relationship between the values of LPSP and different system configurations for different total head. At each value of LPSP a game of combination of design variables corresponds. In this part, the types of wind turbines, tank, and mast are set. Analysis of this figure reveals that more total head is greater, more it requires a large number of wind turbines and tanks. In addition, more the value of LPSP is low, more the number of wind turbines and of tanks is high. Table 8 presents the five best solutions of the study well as their characteristics. These solutions satisfy the constraints of the problem and give results that minimize all the objectives defined in terms of three criteria while remaining within the scope of each decision variable. The first solution introduces a LPSP 7.52%. If we decide to cover all water needs (LPSP = 0%), it will use more wind turbines and tanks.

Figure 7. Evolution of the objective functions based on combinations of design variables: (a) Desirability index linked to environmental aspects. (b) Global objective function of the system

Figure 8. Contours of the global objective function

Figure 9. Visualization of LPSP: (a) 3 D representation of LPSP. (b) Contours LPSP

The maximum value DOI₃ is 0.9899(see Fig. 7 a) and the associated optimal configuration is 12 wind turbines of 600 W, 1tank of 20 m³ with a mast 70 m and a total head of 30 m; which corresponds to a ratio of 60 W/m^3 . Obviously, the three indices of desirability not lead to the same optimal configuration. Thus, the global objective function after aggregation index of desirability and shown in Fig. 7 b has the maximum value 0.9512. Figure 8, we selected the contours for which you want to display the value. At this optimal configuration corresponds 17 wind turbines rated power 600 W, 2 tanks of 20 m³ capacity, a mast height of 50 m and a total head 30 mins a ratio of 255 W/m³. Figure 9 shows the relationship between the values of LPSP and different system configurations for different total head. At each value of LPSP a game of combination of design variables corresponds. In this part, the types of wind turbines, tank, and mast are set. Analysis of this figure reveals that more total head is greater, more it requires a large number of wind turbines and tanks. In addition, more the value of LPSP is low, more the number of wind turbines and of tanks is high. Table 8 presents the five best solutions of the study well as their characteristics. These solutions satisfy the constraints of the problem and give results that minimize all the objectives defined in terms of three criteria while remaining within the scope of each decision variable. The first solution introduces a LPSP 7.52%. If we decide to cover all water needs (LPSP = 0%), it will use more wind turbines and tanks.

Conclusion

In this paper, we presented an optimization method to find the configuration optimal of a wind pumping system coupled to tanks. This system is designed to cover the water needs of a city of Benin. The components of the pumping sub-system are modeled and validated by simulation that it is not the most appropriate method. The genetic algorithm is used to make system optimization. The design of the pumping system is made according to the concept of the loss power supply probability (LPSP), the concept of the life cycle cost (LCC) and the concept of the life cycle energy of the system (primary energy and CO₂ emissions). Different selected criteria are not the same size, the desirability functions are put to use to solve the problem of scaling. At the end of this study, different candidate solutions are generated and made available to the design. The best solution obtained i.e. that which with the total objective function highest, consists of 17 wind turbines, 2 tanks, all type 1 (see table 1) a 50 m mast and a well pump head 30 m. This solution requires an LCC 38958 dollars, a primary energy of 963380185 kWh and a CO₂ emission 1.165.10⁹ with LPSP 7.52%; which corresponds to a ratio of 255 W/m³

REFERENCES

- Ai, B., Yang, H., Shen, H., Liao, X. 2003. Computer-aided design of PV/wind hybrid system. *Renewable Energy*, 28, 1491–1512.
- Badescu, V. 2003. Time dependent model of a complex PV water pumping system. *Renewable Energy*, 28 (4), 543– 560.
- Bakelli, Y., Hadj Arab A., Azoui B. 2011. Optimal sizing of photovoltaic pumping system with water tank storage using LPSP concept. *Solar energy*, Vol. 85, 288-294.

- Bernal-Agustín, J.L., Dufo-López, R., Rivas-Ascaso, D.M., 2006. Design of isolated hybrid systems minimizing costs and pollutant emissions. *Renewable Energy*, 31, 2227– 2244.
- Borowy, B.S., Salameh, Z.M. 1996. Methodology for optimally sizing thecombination of a battery bank and PV array in a wind/PV hybridsystem. IEEE Transactions on Energy Conversion 11, 367–373.
- Borrowy, B.S. and Salameh, Z.M. 1997. Methodology for Optimally Sizing the Combination Battery Bank and PV Array in a Wind/PV Hybrid System. *IEEE Transaction on Energy Conversion*, Vol. 12, N°1, pp. 73 - 78.
- Borrowy, B.S., Salameh, Z.M. 1997.Methodology for optimally sizing the combination battery bank and PV array in a wind/PV hybrid system. *IEEE Transaction on Energy Conversion*, vol. 12, n° 1, pp. 73 - 78.
- Bouzidi, B., Malek, A., Haddadi, M. 2006. Rentabilité économique des systèmes de pomp age photovoltaïque. *Revue des Energies Renouvelables*, Vol. 9 N°3, 187-197.
- Clarck R. N., Mulh K. E. 1992. Water pumping for livestock, wind power proceedings, USA.
- Deb K, Pratap A, Agarwal S, Meyarivan T. 2002. A fast and elitist multi-objective Genetic algorithm: NSGA-II. IEEE Transaction on Evolutionary Computation; 6(n.2):182–197.
- Dehghan, S., Kiani, B., Kazemi, A., Parizad, A. 2009.Optimal Sizing of a hybrid Wind/PV Plant Considering Reliability Indices. *World Academy of Sciences, Engineering and Technology*, 56.
- Derringer, G.1980. Simultaneous optimization of several response variables. JQT, tome 12.
- Deshmukh, M.K., Deshmukh, S.S. 2008. Modeling of hybrid Renewable Energy, systems. Renewable and Sustainable Energy Reviews, 12, 235–249.
- Diaf, S., Belhamelb, M., Haddadi, M., Louche, A. 2008a. Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in Corsica Island. *Energy Policy*, 36, 743–754.
- Dufo-López, R., Bernal-Agustín, J.L., 2008. Multi-objective design of PV-wind-diesel- hydrogen-battery systems. *Renewable Energy*, 33,2559–2572.
- Ekren, O., Ekren, B.Y. 2010. Size optimization of a PV/wind hybridenergy conversion system with battery storage using simulated annealing. *Applied Energy*, 87, 592–598.
- Hadj Arab, A., Benghanem, M., Gharbi, A., 2005. Dimensionnement de systèmes de pompage photo voltaïque. *Ren. Energ.*, Vol. 8, 19-26.
- Hamidat, A., Benyoucef, B., 2008. Mathematic models of photovoltaic motor-pump systems. *Renewable Energy*, 33 (5), 933–942.
- Kaabeche, A., Belhamel, M., Ibtiouen, R., 2010. Sizing optimization ofgrid-independent hybrid photovoltaic/wind power generation system. *Energy*, 36, 1214–1222.
- Kaabeche, A., Belhamel, M., Ibtiouen, R., Moussa, S., Benhadadi, M.R., 2006. Optimisation d'un système hybride (Eolien–Photovoltaïque) totalement autonome. *Revue des Energies Renouvelables*, 9, 199–209.
- Khan , M.J., Iqbal, M.T. 2005. Pre-feasibility study of standalone hybrid energy systems for applications in Newfoundland. *Renewable Energy*, 30: 835-854.
- Koutroulis, E., Kolokotsa, D.A. 2006. Potirakis, K. Kalaitzakis, Methodology for optimalsizing of stand-alone photovoltaic/wind-generator. Wind-generator systems using genetic algorithms, Solar Energy.
- Lu, L., Yang, H.X., Burnett, J. 2002. Investigation on wind power potential on Hong Kong islands – an analysis of

wind power and wind turbine characteristics. *Renewable Energy*, 27, 1–12.

- Madam, C. 2003. La valorisation des matières plastiques en fin de vie: Etat des lieux et propositions d'amélioration. Mémoire de Diplôme d'Etudes Spécialisées en Gestion de l'Environnement. Université Libre de Bruxelles.
- Markvart, T. 1996. Sizing of hybrid PV-wind energy systems. Solar Energy, 59, 277–281.
- Navaeefard, A., Moghaddas Tafreshi,S. M., Mehdi Derafshian Maram, 2010. Distributed Energy Ressources Capacity Determination of a Hybrid Power System in Electricity Market. 25thInternational Power System Conference 10-E-EPM-2163, PSC.
- Ofry, E.and Brauntein, A. 1983. The Loss of Power Supply Probability as a Technique for Designing Standalone Solar Electrical (Photovoltaic) Systems. *IEEE Transaction on Power Apparatus and Systems*, Vol.PAS-102, N°5, pp. 1171 - 1175.
- Rajendra, A.P., Natarajan, E. 2006. Optimization of integrated photovoltaic–wind power generation systems with battery storage. *Energy*, 31 (12), 1943–1954.
- Sebastian, P., Quirante, T., Ho Kon Tiat, V., Ledoux, Y. 2010. Multi-objective optimization of the design of two-stage flash evaporators:Part 2. Multi-objective optimization.
- Sèmassou C., Edah G., Vianou A.2013. Design and Optimization of a Wind SystemUsing a Genetic Algorithm. *Physical Review & Research International*, 3(4): 367-384.
- Sèmassou C., Guidi C., Prodjinonto V., Galimova V., Vianou A.2013. Methods of weights definition in multicriteria analysis. *Caspian journal: management and high technologies*, N°4 (24): 59-73.
- Sèmassou, C., Nadeau, J.P., Sebastian P., Pailhès J., Vianou, A.2013. Optimisation multicritère en conception de système photovoltaïque pour des maisons individuelles en contexte africain. *Revue des Energies Renouvelables*, Vol. 16 N°2 225 – 246.

Thiaux,Y. 2010. Optimisation des profils de consommation pour minimiser les coûtséconomique et énergétique sur cycle de vie des systèmes photovoltaïques autonomes ethybrides. Evaluation du potentiel de la technologie Liion. Thèse de doctorat, Ecole Nationale Supérieure de Cachan.

- Yang, H., Lu, L., Zhou, W. 2007. A novel optimization sizing model for hybrid solar-wind power generation system. *Solar Energy*, 81, 76–84.
- Yang, H.X., Burnett, L., Lu, J. 2003. Weather data and probability analysis of hybrid photovoltaic–wind power generation systems in Hong Kong. *Renewable Energy*, 28, 1813–1824.
- Yang, H.X., Zhou, W., Lu, L., Fang, Z.H. 2008. Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology byusing genetic algorithm. *Solar Energy*, 82, 354–367.
- www.fao.org/ag/againfo/programmes/fr/lead/toolbox/.../lunder gw.htm (In formations surle prix d'un forage).

Annex: Characteristics of the twoturbines

Table 9. Characteristics of the two wind turbine

	Wind turbine 1	Wind turbine 2
P_r	600 W	1300 W
Diameter	1.06 m	2 m
height	1.20 m	2.1 m
V_{c}	1 m/s	1 m/s
V_r	12 m/s	13 m/s
V_{f}	65 m/s	60 m/s
