

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 11, Issue, 03, pp.1889-1893, March, 2019 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

DOI: https://doi.org/10.24941/ijcr.33334.03.2019

RESEARCH ARTICLE

NEAR PRODUCT CORDIAL GRAPH-CYCLE

^{*1}Davasuba, S. and ²Nagarajan, A.

¹Research Scholar, PG and Research Department of Mathematics, V. O. Chidambaram College, Tuticorin -628008, Tamil Nadu, India

²Associate Professor, PG and Research Department of Mathematics, V. O. Chidambaram College,

Tuticorin -628008, Tamil Nadu, India

ARTICLE INFO	ABSTRACT
Article History: Received 26 th December, 2018 Received in revised form 13 th January, 2019 Accepted 17 th February, 2019 Published online 31 st March, 2019	In this paper we discuss about Near product cordial labeling graphs like (C4 \otimes C4) n,Qn, Parachute P2,n-2,Total graph. If the labeling in the graph satisfies the condition of Near product cordial then it is called Near product cordial graphs.In this paper we have proved that the above mentioned graphs except Total graph are Near product cordial graphs.

Key Words:

Cordial labeling, Divisor cordial labeling and Near Product cordial labeling.

Copyright © 2018, Davasuba and Nagarajan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Davasuba, S. and Nagarajan, A. 2018. "Near product cordial graph-cycle", International Journal of Current Research, 11, (03), 1889-1893.

INTRODUCTION

The concept of cordial labeling was introduced by Cahit. The concept of product cordial labeling is introduced by M. Sundaram, R. Ponraj and S. Somasundaram. Motivated by the above definitions, Near Product cordial was defined.

Theorem 1: The concept of cordial labeling was introduced by Cahit. The concept of product cordial labeling is introduced by M. Sundaram, R. Ponraj and S. Somasundaram. Motivated by the above definitions, Near Product cordial was defined.

Theorem 1:

 $(C_4 \otimes C_4)$ n is Near product cordial graph

Proof:

Let $V(C_4 \otimes C_4)$ n = { $v_1^j : 1 \le i \le 4$ and $1 \le j \le n$ } and

$$\begin{split} & E(C_4 \otimes C_4) \ n = \{ v_i^{\ j} v_{i+1}^{\ j} : 1 \leq i \leq 3 \ \text{and} \ 1 \leq j \leq n \} U\{ \ v_4^{\ j} v_1^{\ j} : 1 \leq j \leq n \} \ U\{ \ v_4^{\ j} v_2^{\ j+1} : 1 \leq j \leq n-1 \}. \\ & \textbf{Case (i):} \end{split}$$

n is even and let n = 2k (say)

Define f:V(C₄ \otimes C₄)2k \rightarrow {1,2,3,...,8k-1, 8k+1} by f(v₁^j) = $\begin{cases} 8(j-1) + 1, 1 \le j \le k \\ 8(j-k-1) + 2, k+1 \le j \le 2k \end{cases}$

*Corresponding author: Davasuba, S.

Research Scholar, PG and Research Department of Mathematics, V. O. Chidambaram College, Tuticorin -628008, Tamil Nadu, India

$$f(v_2^{j}) = \begin{cases} 8(j-1) + 3, 1 \le j \le k \\ 8(j-k-1) + 4, k+1 \le j \le 2k \end{cases}$$
$$f(v_3^{j}) = \begin{cases} 8(j-1) + 5, 1 \le j \le k \\ 8(j-k-1) + 6, k+1 \le j \le 2k \end{cases}$$

$$f(v_4^j) = \begin{cases} 8(j-1) + 7, 1 \le j \le k\\ 8(j-k-1) + 8, k+1 \le j \le 2k \end{cases}$$

Edge Condition:

 $e_f(0) = 5k$ and $e_f(1) = 5k-1$, when n = 2k

Then, $|e_f(0)-e_f(1)| = 1$

Hence, $(C_4 \otimes C_4)2k$ is Near product cordial graph.

Case (ii):

Suppose n is odd and let n = 2k+1 (say)

Define f: V(C₄ \otimes C₄)2k+1 \rightarrow {1,2,3, ...,8k+3,8k+5} by

$$f(v_1^{j}) = \begin{cases} 8(j-1) + 1, 1 \le j \le k+1\\ 8(j-k-2) + 4, k+2 \le j \le 2k+1 \end{cases}$$

$$f(v_2^{j}) = \begin{cases} 8(j-1) + 3, 1 \le j \le k+1\\ 8(j-k-2) + 6, k+2 \le j \le 2k+1 \end{cases}$$

$$f(v_3^{j}) = \begin{cases} 8(j-1) + 5, 1 \le j \le k+1\\ 8(j-k-2) + 8, k+2 \le j \le 2k+1 \end{cases}$$

$$f(v_4^{j}) = \begin{cases} 8(j-1) + 7, 1 \le j \le k\\ 8(j-k-1) + 2, k+1 \le j \le 2k+1 \end{cases}$$

Edge Condition:

 $e_{f}(0) = 5k+2$ and $e_{f}(1) = 5k+2$, when n = 2k+1

Then, $|e_f(0)-e_f(1)| = 0$

Hence, $(C_4 \otimes C_4)2k+1$ is Near product cordial graph.

Theorem 2:

 Q_n is Near product cordial graph if and only if n is odd.

Proof:

$$\begin{split} & \text{Let } V(Q_n) = \{ \begin{array}{l} v_1{}^i : 1 \leq i \leq n, v_2{}^i : 1 \leq i \leq n \\ & \text{ and } v_3{}^i : 1 \leq i \leq n+1 \} \text{ and} \\ & \text{E}(Q_n) = \{ (v_1{}^i v_3{}^i : 1 \leq i \leq n) \cup (v_2{}^i v_3{}^i : 1 \leq i \leq n) \cup (v_1{}^i v_3{}^{i+1} : 1 \leq i \leq n) \cup (v_2{}^i v_3{}^{i+1} : 1 \leq i \leq n) \} \end{split}$$

Define f: V(Qn) \rightarrow {1, 2, 3, ..., 3n, 3n+2} as follows

When n is odd.

$$f(v_1^{i}) = \begin{cases} 3 + 6(i-1) & , 1 \le i \le \frac{n+1}{2} \\ 4 + 6(i-\frac{n+3}{2}) & , \frac{n+3}{2} \le i \le n \end{cases}$$
$$(v_2^{i}) = \begin{cases} 5 + 6(i-1), 1 \le i \le \frac{n+1}{2} \\ 6 + 6(i-\frac{n+3}{2}) & , \frac{n+3}{2} \le i \le n \end{cases}$$

$$f(v_3^{i}) = \begin{cases} 1 + 6(i-1), 1 \le i \le \frac{n+1}{2} \\ 2 + 6\left(i - \frac{n+3}{2}\right), \frac{n+3}{2} \le i \le n+1 \end{cases}$$

Edge Condition:

 $e_f(0) = 2n$ and $e_f(1) = 2n$

Then, $|e_f(0) - e_f(1)| = 0$

Hence, Q_n is Near product cordial graph.

Conversely, Suppose n is even

For any labeling f: (G) \rightarrow {1, 2, ..., 3n, 3n+2}, It is observed that there are $\frac{3n}{2}$ odd numbers and $\frac{3n}{2} + 1$ even numbers in f(V(Q_n)). To get more edge as 1, a maximal connected sub graph of Q_n on $\frac{3n}{2}$ vertices should be labeled with odd numbers. So label induced subgraph of Q_n with the vertex set {v₁⁽ⁱ⁾ v₂⁽ⁱ⁾ v₃⁽ⁱ⁾: $1 \le i \le \frac{n}{2}$ } by odd numbers to get maximum number of 1 as edge label.

Then $e_{f}(1) \le 2n-2$ and $e_{f}(0) \ge 2n+2$ Therefore, $e_{f}(0) - e_{f}(1) \ge 4$ Hence, Q_n is not near product cordial graph.

Theorem 3:

Parachute $P_{2,n-2}$ is a near product cordial when $n \ge 3$.

Proof:

Let $V(P_{2,n-2}) = \{ u, u_i : 1 \le i \le n \}$ and

 $E(P_{2,n-2}) = \{u_i u_{i+1} : 1 \le i \le n\} \cup \{u_n u_1\} \cup \{u_n u\} \cup \{u_n u\}$

Define $f: V(P_{2,n-2}) = \{1, 2, 3, \dots, n, n+2\}$ as follows

Case (i): When n is odd

When n = 3

 $f(u_i) = 2i - 1, 1 \le i \le 3$

f(u) = 2

Edge Condition:

 $e_f(0) = 2$ and $e_f(1) = 3$

Then, $|e_f(0) - e_f(1)| = 1$

When n is odd and $n \ge 5$

$$f(u_i) = 2i-1 , 1 \le i \le \frac{n+3}{2}$$

$$f(u_i) = 2+2(i-\frac{n+5}{2}) , \frac{n+5}{2} \le i \le n$$

$$f(u) = n-1$$

Edge Condition:

$$e_f(0) = \frac{n+3}{2}$$
 and $e_f(1) = \frac{n+1}{2}$

Then, $|e_f(0) - e_f(1)| = 1$

Hence, Parachute $P_{2,n-2}$ is Near product cordial graph when n is odd.

Case (ii):

When n is even

When n is even there are $\frac{n}{2}$ odd numbers and $\frac{n+2}{2}$ even numbers in f(V(G)).

In order to get maximum number of 1, we should label maximal connected sub graph on $\frac{n}{2}$ vertices of G with odd numbers. Note that maximal connected sub graph on $\frac{n}{2}$ vertices should contain the cycle (uu₁u_n) as a sub graph. It should be a unicyclic graph and hence its number of edges also $\frac{n}{2}$.

Then, $e_f(0) \ge \frac{n}{2} + 2$ and $e_f(1) \le \frac{n}{2}$

Hence $|e_f(0) - e_f(1)| \ge 2$. It is not a Near product cordial graph.

But it is a weak near product cordial graph

Now label $(P_{2,n-2})$ as follows

$$\begin{split} &f(u) = 3\\ &f(u_n) = 1\\ &f(u_i) = 5{+}2(i{-}1) \ , \ 1{\le} \ i \le \frac{n{-}4}{2}\\ &f(u_i) = 2{+}2(i{-}\frac{n{-}2}{2}), \frac{n{-}2}{2} \le i \le n-1 \end{split}$$

Edge Condition:

 $e_f(0) = \frac{n+4}{2}$ and $e_f(1) = \frac{n}{2}$

Then, $|e_f(0) - e_f(1)| = 2$

Hence, Parachute $P_{2,n-2}$ is Weak Near product cordial graph when n is even and n > 4.

Case (iii):

When n = 4

In this case, we have 5 vertices and 6 edges exactly and there are 2 odd numbers and 3 even numbers in f(V(G)).

Clearly, $e_f(0) = 5$ and $e_f(1) = 1$

Hence, Parachute $P_{2,n-2}$ is not a Near product cordial graph, when n = 4.

Theorem 4:

The Total graph T(P_n) is not Near product cordial

Proof:

Let V
$$(T(P_n)) = \{u_i: 1 \le i \le n\}$$
 and
 $\{v_i: 1 \le i \le n-1\}$ and
E $(T(P_n) = \{(u_iu_{i+1}) \cup (u_iv_i) \cup (u_{i+1}v_i): 1 \le i \le n-1\} \cup (v_iv_{i+1}): 1 \le i \le n-2\}$

For any labeling f:V(T(P_n)) \rightarrow { 1, 2, 3, ..., 2n-2, 2n} there are n-1 odd numbers and n is even numbers. In order to get maximum edge label 1, a maximal connected subgraph of T(P_n) on n-1 vertices should be labeled with odd numbers. This can be done as follows. If n is odd, the induced sub graph with vertex set {u_i, v_i: $1 \le i \le \frac{n-1}{2}$ } of T(P_n) should be labeled with odd numbers and if n is even then the induced sub graph with vertex set {u_i: $1 \le i \le \frac{n}{2}$ } of T(P_n) should be labeled with odd numbers.

Edge Condition:

In both the cases we have,

 $e_f(1) \le 2n-5$ and $e_f(0) \ge 2n$

Then, $e_f(0) - e_f(1) \ge 2n - (2n-5) = 5$

Hence, T(P_n) is not Near product cordial graph.

REFERENCES

- 1. I.Cahit, Cordial graphs : A weaker version of graceful and harmonious graphs, Ars Combinatorial, 23, 201-207 (1987).
- 2. R. Varatharajan, S.Navaneethakrishnan, K.Nagarajan, Special classes of divisor cordial graphs, *International Mathematical Forum*, Vol.7, no. 35, 1737-1749 (2012).
- 3. R. Varatharajan, S.Navaneethakrishnan, K.Nagarajan, Cycle related divisor graphs, *International Journal* of Mathematics and Soft Computing
- 4. R.Tao, On k-cordiality of cycles, crowns and wheels, Systems Sci., 11, 227-229 (1998).
- 5. S. K. Vaidya, C. M. Barasara Product Cordial Labeling for Some New Graphs, *Journal of Mathematics Research*.
