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INTRODUCTION 
 
An improved monitoring of forest biomass is needed to 
support requirements to sustainable forest management and 
carbon accounting  (Houghton, 2007). Since the Kyoto 
protocol on greenhouse gas emission reduction, forests have 
been targeted for reducing carbon emissions because, they 
store great quantities of carbon and exchange it with the 
atmosphere through photosynthesis and respiration
2011). As a consequence, a mechanism for Reducing 
Emissions from Deforestation and Forest Degradation and the 
role of conservation, sustainable management of forests and
 enhancement of forest carbon stocks in developing countries
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ABSTRACT 

The estimation of aboveground biomass (AGB) at the landscape level is necessary for estimating 
carbon pools in forest and provides baseline data for future studies. 
combine national forest inventory and remote sensing data to estimate aboveground forest biomass 
from remotely sensed data, and assess the accuracy of the method developed. 
across forest’s zone in Togo were produced based on secondary data from
(NFI) field measurement using open sources Landsat images. The 2015 national inventory data (168 
plots) has served as the base for validation of the 2015 biomass map
to quantify accuracy: root mean square error (RMSE), bias and the coef
of the linear regression between predicted and measured AGB values
at 30 metres spatial resolution was produced over 603'972 ha. The overall model shows 74% of 
variance. The predicted AGB values across the landscape are between 
mean equal to 75.83Mg/ha and standard deviation (S.D.) equal to
overestimated biomass of the AGB with low values (Forest plantation and Savanna) and
underestimated the AGB with high biomass values (Fallow, Woodland, Dense forest and Gallery 
forest). The RMSE values vary between27.41 and 35.66 t/ha depending on the forest strata and the 
overall RMSE value is around 15 t/ha. The estimated mean biomass for the model ischosen from 
40.34 (savanna) to 118.71 (dense forest) t/ha. This study can be considered as a reliable, cost
effective and reproducible approach to map AGB in dynamic forest landscapes and can support policy 
approaches towards reducing emissions from deforestation and degradation (REDD+).
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(REDD+) has been developed under the United Nations 
Framework Convention on Climate Change (UNFCCC). 
REDD+ deploys results-based finance to incentivize emissions 
reduction, based on a functional f
reporting and verification (MRV) system 
functional MRV to support REDD+ requires estimations of the 
area of forest loss and gain and the corresponding carbon stock 
and changes (UNFCCC. 2009)
estimation of the actual emissions and the construction of 
forest reference emissions level (FREL), a benchmark against 
which the actual emissions are being compared
2011). A combination of field inventory and remote sensing is 
expected to provide these data. 
capability to accurately map and monitor changes in forest 
carbon by estimating gross emissions as a function of area of 
forest loss and density of carbon stocks within areas of forest 
loss (Tyukavina, 2013). The REDD+ mechanisms will then 
rely on accurate mapping and monitoring of Above Ground 
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Carbone/biomass (AGC/B) (Houghton, 2010). However, 
scientific, technical and operational aspects of AGC mapping 
and monitoring are still in their infancy (Tyukavina, 2013). 
The suggested schemes for carbon credit incentive based on 
deforestation or carbon stock baselines require accurate 
estimation of biomass (Ern, 1979). 
 
As tropical country Togo has recently joined the REDD+ 
mechanism with the ambition of creating a new incentive 
system to reduce forest loss and to restore the integrity of 
degraded forests (MERF 2013). The country has five 
ecological zones and the ecological zone IV which is the 
Togo’s forest zone constitute the domain of the semi-
deciduous dense forests (Ern, 1979) is now very degraded and 
is disappearing. Several previous studies (Adjossou, 2009; 
Adjossou, 2004) have shown that forests in the sub-humid 
mountainous area are very fragmented and have practically 
been reduced to hard-to-reach areas. Despite its degraded state, 
the ecological zone IV which extends over the plateau and 
central region of Togo is one of the main forest area in the 
country (MERF, 2016). Monitoring the biomass by remote 
sensing in the forest zone of Togo is a challenge because, of 
the effect of the relief and different forest types that mix up 
with fallows and secondary forests growing on agricultural 
land. The ability to map forest biomass is important for 
monitoring changes in forest structure and changes in the 
carbon account (Labrecque et al., 2006). These facts raise a 
research question: What aboveground biomass can be observed 
spatially in the study area over the last decades? 
 
In the context of REDD+ in Togo, previous work on forest 
cover mapping has provided valuable insight into vegetation 
status and different maps were produced (MERF, 2018). 
However, few data are available on forest biomass mapping. In 
2016, the World Bank funded the definition of the 
methodology and tools for biomass estimation in various 
compartments in Togo. Despite the estimation of biomass, 
further improvements in classification methods for biomass 
change are necessary in order to provide accurate and 
consistent estimations of biomass change at national and sub 
national levels. The year 2015 is a reference year in Togo 
because of the realization of the first national forest inventory. 
The result of this forest inventory was used to assess AGB for 
plots of different strata. According to Houghton (Houghton, 
2005), it is critical to have reliable and current information on 
the spatial distribution of AGB in the forest’s zone over the 
last decades in order to calculate the sources (and sinks) of 
carbon that result from converting a forest to cleared land (and 
vice versa) and to enable measurement of change through time. 
In recent decades, efforts have been made to estimate forest 
biomass, including field measurements and model simulations. 
Numerous regression models have been developed to estimate 
AGB while these models are accurate at tree, plot, and stand 
levels, they are limited when considering spatial pattern 
analysis of AGB across the landscape (Zheng, 2004). In order 
to scale AGB estimations to the landscape level, the 
estimations have to be linked with various vegetation indices 
derived by remote sensing data(16). As a result, a large number 
of research have focused on estimating biomass directly with 
moderate spatial resolution (e.g. Landsat, (Labrecque, 2006; 
Pflugmacher et al., 2014; Ji et al., 2012). Models derived from 
remote sensing need further calibration with ground data 
before they can be used appropriately to predict AGB for a 
given landscape. It has been demonstrated that the Landsat  
imagery is very useful for monitoring environmental change 

when combined with field measurements (19,20). This fact 
highlights a research question: How can aboveground biomass 
be mapped consistently, in the forest ecological zone 4 in 
Togo? The general objective of the study is to contribute to the 
monitoring of carbon stock and dynamics in the context of 
REDD+. The specificobjectives of this study is to combine 
national forest inventory and remote sensing data to 
developspatial map of aboveground forest biomass, and 
estimate aboveground biomassfrom the developed method. 

 
MATERIALS AND METHODS 
 
Study area: The study area is Togo’s bioclimatic region 
“ecological zone IV” andis located in the southern part of the 
Atakora mountains, south-west of Togo, on the border between 
Togo and Ghana in the region called Togo Mountains or Togo 
highlands. The study area extends between the latitudes 6° 15 
and 8° 20 and the longitudes 0° 30 and 1° and covers an area 
of 603’972 hectares (Figure 1).The climate prevailing in this 
area is a Guinean mountain climatecharacterized by a long 
rainy season (8-10 months). The mean annual temperatures 
range from 21° to 25°C and the total annual rainfall ranges 
varies from 1400 to 1700 mm. This zone contributes 
significantly to species richness in Togo (10). It is the current 
domain of semi-deciduous forests.The study area shows a 
strong topographic heterogeneity. The average altitude is 800 
m, with peaks at Djogadjèto (972 m) and Liva (950 m). A 
succession of plateau (plateau of Kloto, Kouma, Danyi, 
Akposso, Akebou and Adele) where hills along with their 
valleys and caves are common. Landforms are diverse and 
complex. A network of complex secondary rivers covers the 
area with three catchment areas: the basin of the lake Volta in 
the west of the Mounts and basin of the Mono River and Zio 
River in the east of the mounts.Population distribution and 
land management vary across the area with implications for 
forest cover changes. 
 
Overview of data and methods: The steps of this research 
are: (a) AGB calculation based on allometric equation and 
forest inventory data, (b) acquisition, preprocessing, and 
stacking of Landsat images, (c) AGB classification model 
using Random Forest and AGB values of NFI plots for 
calibration (d) application of the model for creating AGB 2015 
based on AGB calculated and using Random Forest and (e) 
accuracy assessment of resulting maps using the national forest 
inventory plots.  
 
Landsat's temporal and spatial coverage with moderate spatial 
resolution provide a unique opportunity for characterizing 
vegetation changes across large areas and longtime scales 
(Pflugmacher et al., 2014). A number of other national 
biomassmaps have been produced based onthe analysis of full 
coverage of Landsat data (Labrecque, 2006; Pflugmacher, 
2014; Ji, 2012). Landsat data have been widely used in forest 
aboveground biomass (AGB) estimation, commonly through 
developing empirical relationships between AGB or other 
forest characteristics and spectral indices such as the 
normalized difference vegetation index (NDVI) derived from 
satellite data. The study area is covered by two WRS2 scenes 
with path 193 and rows 054 and 055. Landsat surface 
reflectance data at the end of the dry period (Jan - Feb) with 
less than 10% cloud cover were downloaded from the U.S. 
Geological Survey (USGS) Center for Earth Resources 
Observation and Science (EROS) portal 
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(https://earthexplorer.usgs.gov/) at full spatial and spectral 
resolution (30 x 30 m resolution). The data selected was for the 
end of dry season as forests can then be best distinguished 
from other types of vegetation and classification tends to be 
more accurate than during the wet season (Liu et al., 2015). 
Furthermore, the availability of cloud-free images is limited in 
wet season in comparison to dry season. The final dataset 
obtained is made of Landsat 8/ OLI for the year 2015. The 
acquisition date of the image is 04/01/2015. For the date, the 
six spectral bands B, G, R, NIR, SWIR1 and SWIR2 of the 
Landsat images of scenes p193r054 and p193r055 were 
mosaicked and projected to the coordinate reference system 
WGS 84 - UTM 31. All data manipulation and analysis of 
satellite images were done using the R environment for 
statistical computing (Core Team, 2019) using the R-packages 
“raster”. 

 
Field measurements: In the framework of the national forest 
inventory of Togo, the sample plots are distributed in a random 
manner (MERF, 2016): A total of 945 national inventory plots 
are distributed on the whole country (MERF, 2016). In the 
framework of this study, the limit of forest zone of Togo was 
overlain on the map of Togo to extract the plots found there. A 
total of 168 plots were retained and spread over the study area 
(Figure 2). Field data were collected to estimate the following 
components of AGB: tree and shrub (both dead and alive) 
biomass and understory biomass. The field plots selected for 
the inventory is circular (better relationship between the 
sample area and its perimeter). The plots have been subdivided 
into three sub-samples (Figure 3) whose radius depends on the 
expected density of the vegetation to be measured: 
 
 A 20 m radius for all sample trees with a breast height 

diameter (Dref) equal to or greater than 10 cm; the area 
of a plot of 20 m radius corresponds to about 1 256 m2 
or 12.6% of one ha; The expected average number of 
sample trees is 15; 

 a radius of 4 m for all trees and shrubs with Dref 
between 5 and 9.99 cm (undergrowth); 

 Four (4) circular subplots of 1 m radius for 
regeneration, ie for all trees / shrubs with a diameter of 
less than 5 cm and a height greater than or equal to 1.3 
m. 

 
Estimation of AGB from forest inventory: The basis for the 
assessment of biomass are the surveys made on 168 plots (r = 
20m). AGB (Mg/ha) is defined in this study as biomass of 
trees greater than 10 cm DBH and taller than 1.3 m. The best 
taxonomic match wood density of each stem was extracted 
from a global database (Zanne et al., 2009). The above ground 
biomass was calculated using the Chave (Chave et al., 2014) 
‘moist forest’ equation as following:��� = 0.0673 ∗
(��� ∗ �����)�.���,where  
 
AGB is the AGB (kg) at the tree scale, WSG (g cm-3)isthe tree 
wood density, DBH (cm)is the diameter breast height and 
H(m)is the tree height. AGB is then converted to dry matter 
Megagrams per hectare. Once AGB was calculated using the 
DBH of all trees species in each plot, we calculated the sum 
and converted to Megagrams per hectare (Mg/ha). The AGB of 
this study was compared to aboveground carbon (AGC) of 
other studies by divided the AGC by carbon content of dry 
biomass considering it as 47%(25). The AGB densities found 
in the national forest inventory (NFI) were used to calibrate a 

biomass map based on 2015 Land sat imagery. To obtain the 
necessary spectral values, the weighted averages of the values 
of the different pixels covered by the NFI plots were 
calculated. 
 
Production of AGB map with Random forest: The 2015 
above-ground biomass calculated on the basis of the national 
forest inventory as well as Landsat images from 2015 were 
integrated into the "Random forest" algorithm to produce the 
2015 aboveground biomass map. The Random Forest 
algorithm, developed by Breiman (Breiman, 2001), was 
selected for its good predictive capabilities for regression 
(Gislason et al., 2006). Random Forest is a non-parametric 
supervised classification algorithm that combines the decision 
tree algorithm and an aggregation technique. The algorithm 
randomly selects a sample of observations and a sample of 
variables many times to produce a number of smallclassi fi 
cation trees (Breiman, 2001). “These small trees are then 
aggregated and a majority vote rule is applied to determine the 
final category (Breiman, 2001)”. For this study we have used 
the Random Forest implementation provided by the R-package 
"Random Forest". In order to improve the discrimination of 
aboveground biomass, several remote sensing indices derived 
from the spectral bands G, B, R, NIR, SWIR1 and SWIR2 
have been calculated: 
 

 The normalized vegetation index (NDVI) is calculated 
as: NDVI= (NIR-red)/(NIR+red), where red and NIR 
stand for the spectral reflectance measurements 
acquired in the red (visible) and near-infrared regions, 
respectively (Rouse, 1974);  

 The enhanced vegetation index (EVI) is computed 
following this equation:  

 
EVI = 2.5×(NIR-red)/(NIR+C1× red - C2 × blue + L),(29) 
where NIR/red/blue are atmospherically-corrected, L is the 
canopy background adjustment that addresses non-linear, 
differential NIR and red radiant transfer through a canopy, and 
C1, C2 are the coefficients of the aerosol resistance term, 
which uses the blue band to correct for aerosol influences in 
the red band. The coefficients adopted in Landsat are; L=1, C1 
= 6, C2 = 7.5;  
 
The Normalized Difference Moisture Index (NDMI) is 
calculated with the following equation 
NDMI=(NIR−MIR)/(NIR+MIR) (30), where MIR is the 
middle infrared;  
 
The Soil Adjusted Vegetation Index (SAVI) is calculated as 
SAVI= (NIR-red)*(1+L)/(NIR+red+L) (Huete, 1988), where 
NIR is the reflectance value of the near infrared band, red is 
reflectance of the red band, and L is the soil brightness 
correction factor;  
 
The Normalized Burn Ratio (NBR1 et NBR2) calculated as: 
NBR = (NIR-SWIR)/(NIR+SWIR), where NIR is near-infrared 
and SWIR is short-wave infrared bands. 
 
The utility of the different spectral bands and indices for the 
identification biomass has been tested with a recursive 
elimination of variables with the RFE algorithm available in 
the R-package “caret” (Kuhn, 2016). The recursive elimination 
of the variables shows that the best prediction is obtained by 
using the individual bands (blue, green, red, short wave 
infrared (SWIR-1 and SWIR-2)) (Figure 4).Many studies have 
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shown  that indices such as normalized difference vegetation 
index (NDVI) are useful predictors of leaf area index (LAI), 
biomass, and productivity in grasslands and forests (Zheng et 
al., 2004). 
 
Accuracy assessment: The inventory field plots were used for 
validation of biomass estimates generated from the model. The 
accuracy of the model was assessed through both comparisons 
between the predicted AGB values and the measured AGB 
from the field. Three measurements were made to quantify 
accuracy: root mean square error (RMSE), relative RMSE 
(RMSEr) as a percent of the mean of the field inventory 
biomass, bias andthe coefficient of determination (R2) of the 
linear regression between predicted and measured AGB values.  
RMSE is frequently used to assess the differences between 
values predicted by a model and the values actually observed 
or measured. It is defined as:   
 

���� = �
1

�
�(�� − ��)�  

�

���

 

 
Where,�� and �� are the predicted AGB and measured AGB of 
the ithplot respectively, and n is the total number of plots. The 
reliability of the biomass estimates was assessed according to 
the RMSE between the predicted and observed biomass and 
the associated bias. A smaller RMSE indicates a higher 
accuracy.  The relative RMSE (RMSEr) is define as RMSEr =

�
����

�
� ∗ 100,  where,y is the mean of the observed values. 

The bias of the model is calculated as: Bias = e1-e2 wheree1 is 
the mean value of the estimated biomass and e2 is the mean 
value of the validation plots(33). The positive value of bias 
suggests an overestimate of AGB by the model, while negative 
value of bias indicate an underestimate of AGB by the model. 
The coefficient of determination (R2)shows how well observed 
AGB are predicted by the model, as the proportion of total 
variation of AGB explained by the model. In addition, the 
mean biomass and the corresponding standard deviations were 
calculated for each forest strata, allowing the determination of 
which strata are most sensitive to errors. 
 

RESULTS 
 
Biomass assessed with inventory field plots: The 
aboveground biomass value was observed lowest (34.67Mg 
ha−1) in savanna strata while, it was highest of 129.31 Mg 
ha−1 in dense forest of the study area with an average value of 
78.63 ± 68.75 Mg ha−1 across the studied forest area (Figure 
5).  
 
Models for estimating AGB: Remote sensing derived 
variables including all Landsat sensors (B, G, R, NIR, SWIR1, 
SWIR2) and derived indices were useful predictors of AGB 
(Figure 4).The regression model for AGB estimation had a 
good fit of R2 = 0.74 (for all NFI) plots. In other words, the 
overall model explained 74% of variance observed between the 
168 NFI plots however, high AGB values were slightly 
underestimated and low AGB value were overestimated 
(Figure 7).The predicted AGB (AGB derived from the 
predicted model) values across the landscape ranged 
from40.34to118.71 Mg/ha (Table 1), with amean value 
of75.83Mg/ha and standard deviation (S.D.) of 57.93Mg/ha; 
consequently, the total AGB in the study area was estimated at 

47’488’814Mg/ha. The biomass classes with the highest area 
was 0– 25 and 26 to 50 Mg/ha (Figure 6). The AGB class 
distribution was skewed toward lower AGB values. Only 1.45 
% of the landscape had AGB >200 Mg/ha (Figure 8). 
 
Validation of modeled AGB: Total biomass and mean 
biomass values calculated for the model in addition to the error 
estimations (Table 1) provided an indication of the errors 
inherent in the biomass map. The mean biomass estimated 
derived from the model ranged from 40.34 (savanna) to 118.71 
(dense forest) Mg/ha. These values suggested that the biomass 
map underestimated biomass when compared with the field 
data plots, which had overall bias values of -2.8 (Mg/ha). All 
forest strata had negative bias, except for forest plantation and 
savanna. The lowest bias registered occurred for fallow strata 
(-2.77 Mg/ha). The model overestimated biomass for the two 
strata (Forest plantation and Savanna) and underestimated 
biomass for the remain forest strata (Fallow, Woodland, Dense 
forest and Gallery forest). The RMSE values ranged from27.41 
to 35.66 Mg/ha depending on the forest strata and the overall 
RMSE value is around 15 Mg/ha. The contribution of dense 
forest and gallery forest to the total above ground biomass was 
greater than those from all the other forest strata. 
 

DISCUSSION 
 

Aboveground biomass distribution: The estimated tree 
biomass values were comparable with values reported for 
tropical forests elsewhere. The above ground biomass of the 
studied ranges well within the range of other tropical dry 
deciduous forests of the world (30–262 Mg.ha−1)(34,35). The 
AGB values found in this study are close to the range of 
aboveground biomass carbon stocks (53 – 638 Mg.ha−1) 
reported from tropical forests of the world(36,37). The AGB 
values varied across different ranges of the study area could be 
due to variation in tree species compositions, diversity, forest 
age, disturbances, and forest management history.  
 

Uncertainties in AGB estimation: The accuracies of our 
regression model and AGB estimates are similar to previous 
studies that used optical remote sensing to map biomass. 
RMSE of models using multiple predictor variables in our 
study ranges between27.41 to 35.66Mg/ha and R2is 0.74. Ji et 
al(18) used Land sat-derived spectral variables and the field 
AGB data to generate a regression model and applied this 
model to map AGB for the ecoregionin Alaska and reported an 
R2of 0.73.Labrecque utilized Land sat TM images to map 
forest biomass in western New-foundland by four methods and 
reported results with RMSE around between 47 and 59 Mg/ha. 
Zhu and Liu(38) utilized seasonal NDVI time-series derived 
from multi-temporal Land sat images to estimate AGB in the 
southeastern Ohio in U.S  and reported an R2 ranges from 0.49 
to 0.58. Houghton(1) mapped forest biomass for Russia with 
500-m resolution MODIS and forest inventory data using a 
regression tree method, which had an R2 of 0.61. ForAGB 
mapping with intermediate resolution satellite data such as 
Landsat and System Pour l’Observation de la Terre (SPOT), 
the model R2 values are commonly between 0.50 and0.70 and 
the absolute errors of the estimates fall in the range of 30–60 
Mg/ha (Zheng, 2004; Ji et al., 2012). Comparing our study 
with these previous studies using optical images at a single 
time and seasonal multi-temporal data, we can see that the use 
of Random Forest and several remote sensing indices derived 
from the spectral bands G, B, R, NIR, SWIR1 and SWIR2 for  
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AGB estimation are able to improve the accuracy of AGB 
modeling. However, the estimation of AGB in our study still 
contains some errors. These errors may result from the fact that 
the geographic matching between Landsat pixels and field 
plots is very challenging because, the plot size does not 
perfectly match the pixel size.  
 

 
Figure 1. Study area Ecological zone IV

 
Mapping forest aboveground biomass: The model used for 
this study obtained small overall RMSE (15 Mg/ha) in the 
validation data. The mean value of AGB in the study area 
according to the model is 75.83 Mg/ha and the standard 
deviation is 57.93Mg/ha. The AGB values show clear spatial 
patterns in the study area (Figure 8): lower AGB values are 
found in relatively flat and low lands which are near roads, 
farming lands, and houses, while higher AGB values are 
distributed in mountainous areas with high elevations and in 
protected areas such as Missahoe forest. A possible reason for 
these patterns is that forests in mountainous areas and 
protected areas are with fewer disturbances than other areas 
and forest aboveground biomass in mature stands is higher 
than young stands (Zhu, 2015).  

Table 1. Evaluation of the produced map using the plots biomass

 
  

 Number of plot 
Fallow 30 
Woodland 27 
Dense forest 69 
Gallery forest 18 
Forest plantation 5 
Savanna 18 
All category 168 
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are able to improve the accuracy of AGB 
However, the estimation of AGB in our study still 

contains some errors. These errors may result from the fact that 
between Landsat pixels and field 

plot size does not 

 

Study area Ecological zone IV 

The model used for 
l RMSE (15 Mg/ha) in the 

validation data. The mean value of AGB in the study area 
Mg/ha and the standard 

Mg/ha. The AGB values show clear spatial 
patterns in the study area (Figure 8): lower AGB values are 

flat and low lands which are near roads, 
farming lands, and houses, while higher AGB values are 
distributed in mountainous areas with high elevations and in 
protected areas such as Missahoe forest. A possible reason for 

that forests in mountainous areas and 
protected areas are with fewer disturbances than other areas 
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With optical Remote Sensing data (satellite imagery) we
determine crown-cover to a certain extent but not the height of 
the trees, which is also important for biomass estimates of 
forests (Hansen et al., 2019). 
underestimate the AGB at high biomass values and 
overestimate the AGB at low values 
(Figure 8), the estimated AGB values corresponded well in 
general with the AGB value from the field. The skewed AGB 
distribution toward lower values (Figure 6) was caused by lack 
of old growth forests, high proportion
fallow, which usually had low biomass.
AGB were clearly related to landscape structure and 
composition. Places with higher AGB are usually associated 
with mature forests  (Zheng et al
 

Figure 2. Distribution of NFI field plots in the study area

Evaluation of the produced map using the plots biomass Valeur (Mg/ha)

AGB derived from fied data  AGB derived from the model

AGB SD  AGB SD 
56.89 43.01  54.12 36.19 
65.25 43.42  59.75 42.33 
129.31 88.23  118.71 65.19 
114.97 51.86  111.75 48.47 
42.14 26.13  58.35 39.54 
34.67 24.37  40.34 31.20 
78.63 68.75  75.83 57.93 
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With optical Remote Sensing data (satellite imagery) we can 
cover to a certain extent but not the height of 

the trees, which is also important for biomass estimates of 
 Although our models tended to 

underestimate the AGB at high biomass values and 
AGB at low values (Zheng et al., 2004) 

(Figure 8), the estimated AGB values corresponded well in 
general with the AGB value from the field. The skewed AGB 
distribution toward lower values (Figure 6) was caused by lack 
of old growth forests, high proportions of young growth and 
fallow, which usually had low biomass. Spatial patterns of 
AGB were clearly related to landscape structure and 
composition. Places with higher AGB are usually associated 

et al., 2004).  

 
Distribution of NFI field plots in the study area 

Valeur (Mg/ha) 

AGB derived from the model  RMSE  Bias 

  
35.66 -2.77 
25.32 -5.5 
34.35 -10.6 
27.41 - 3.22 
27.43 16.21 
28.15 5.67 
15.07 -2.8 

, January, 2020 



 
Figure 3. Illustration of field AGB data collection design

 

 
Figure 4. Bands used in this study: comparable bands on all 
Landsat sensors (B, G, R, NIR, SWIR1, SWIR2) and derived 

indices 
 

 
Figure 5. Distribution of AGB in different forest strata in 

ecological zone IV: Dens_for: dense forest; Forest_plant: forest 
plantation; Gallery_for: gallery forest

 

 
Figure 6: Area distribution of AGB (Mg/ha) classes
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Figure 6: Area distribution of AGB (Mg/ha) classes 

Figure 7. Field derived aboveground biomas
versus landsat-based biomass estimates. Dots represent data used 
to fit the model. Each point represents the AGB for one of the 168 

plots and the AGB for the pixel that the plot fall in

 
Figure 8. Residuals plots

Figure 9. AGB map of the ecological zone 4

Implications for REDD+ process in Togo
strengths of the method from a practical perspective is its 
compatibility with forest inventories.
offer a great potential for increasing the underst
distribution at local scale. This information is necessary for 
obtaining more reliable carbon estimates and for better 
planning, management and conservation of these ecosystems. 

et al. Estimating aboveground biomass in forest’s zone of Togo (West Africa

 
 

Field derived aboveground biomass density (Mg ha−1) 
based biomass estimates. Dots represent data used 

fit the model. Each point represents the AGB for one of the 168 
plots and the AGB for the pixel that the plot fall in 

 

 

Residuals plots 
 

 
 

AGB map of the ecological zone 4 
 

Implications for REDD+ process in Togo: The main 
strengths of the method from a practical perspective is its 
compatibility with forest inventories. Therefore, our results 
offer a great potential for increasing the understanding biomass 
distribution at local scale. This information is necessary for 
obtaining more reliable carbon estimates and for better 
planning, management and conservation of these ecosystems. 

West Africa) 



The methodological approach proposed here can help to 
identify potential conservation and restoration areas, when 
subjected to heavy anthropogenic pressure. The utility of the 
presented approach under REDD+ comes from the fact that 
Landsat data are available globally free of charge. Landsat data 
may remain the most viable option for national-scale REDD+ 
monitoring for a number of countries (Tyukavina et al., 2000). 
Using Landsat data, we followed recommended good practice 
guidance on the use of map-based activity data. In case of 
Togo RapidEye image to map the reference map may improve 
the model. Landsat resolution assessments of forest change 
may lead to significant underestimation of forest carbon loss  
(Tyukavina et al., 2013). The result of this study is a basis to 
map biomass change and to estimate emissions from 
deforestation and forest degradation in the country.  
 

Conclusion 
 
Information on forest biomass is relevant for global change 
research. In this context, remote sensing provides valuable data 
that can be related to field measurements for the development 
of environmental monitoring techniques.  
Our results suggest that above-ground biomass in forest area in 
Togo can be estimated from Random Forest based on field data 
and Landsat 8 Oli data. In this work, several remote sensing 
indices derived from the spectral bands G, B, R, NIR, SWIR1 
and SWIR2 of Landsat image appears as a good indicator of 
biomass mainly because, it is more sensitive to canopy 
parameters related to absorption of photo synthetically active 
radiation. This work not only contributes to the assessment of 
the status of forest zone ecosystems, but also provides 
methodological approaches to be considered in future studies 
for biomass change mapping and to make comparisons among 
analogous forest ecosystems at global scale. Its provides 
needed baseline information for landscape level analyses 
relating to regional carbon budget (i.e., monitoring changes of 
carbon pool over time). Additionally, this work represents a 
valuable contribution to international initiatives to forest 
conservation and climate change (e.g. REDD+) in Togo. 
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