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The use of Ordinary Least Square (OLS) estimator for estimation of parameters of linear regression 
model in the presence of multicollinearity has been reported to produce imprecise estimates associated 
with large standard errors. This paper presents some c
Generalized Linear Estimator (CORC and ML) and Principal Components (PCs) Estimator as 
alternative to multicollinearity estimation methods. A linear regression model with three uniformly 

distributed explanatory variable
considered through Monte Carlo studies. The experiments were conducted to assess and compare the 
performances of the various proposed combined estimators with their separate ones an
estimator using the Mean Square Error (MSE) criterion by ranking their performances at each 
parameter level and summing the ranks over the number of parameters. Results reveal that the 
proposed estimators of CORCPC1, MLPC1 and MLPC12 are genera
while CORCPC12 does the same at increased sample size. Furthermore, the combined estimator 
CORCPC1, recommended for usage, performs better than the Ridge estimator and it is either the best 
or does not perform too differen
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INTRODUCTION 
 
The Ordinary Least Squares (OLS) estimator has been known 
and reported to be Best Linear Unbiased Estimator (BLUE) of 
the classical linear regression model when all the fundamental 
assumptions of the model are non-violated (Fomby, 1984; 
Maddala, 2002). The use of the estimator for parameter 
estimation when the assumption of indepen
explanatory variables is not valid (leading to multicollinearity) 
does not only produce imprecise estimates but also large 
standard errors. Consequently, insignificance of the true 
regression coefficient and misleading conclusions are often 
arrived at (Chatterjee and Hadi, 2006; Chatterjee
Various estimators including Ridge Regression Estimator 
(Hoerl, 1962; Hoerl and Kennard, 1970), estimator based on 
Principal Component Analysis Regression (Massy, 1965; 
Marquardt, 1970; Bock, et al., 1973; Belsley 
and Marten, 1988) and estimator based on Partial Least 
Squares (Helland, 1988; Helland, 1990; Phatak and Jony, 
1997) have been developed to tackle this problem.
problem associated with linear regression model i
independence of error terms leading to autocorrelation. Using 
the OLS estimator for parameter estimation in the presence of 
autocorrelated error terms has been reported to yield inefficient 
but unbiased estimates, inefficient predicted values
underestimated sampling variance of the autocorrelated error 
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ABSTRACT 

The use of Ordinary Least Square (OLS) estimator for estimation of parameters of linear regression 
model in the presence of multicollinearity has been reported to produce imprecise estimates associated 
with large standard errors. This paper presents some combined estimators based on Feasible 
Generalized Linear Estimator (CORC and ML) and Principal Components (PCs) Estimator as 
alternative to multicollinearity estimation methods. A linear regression model with three uniformly 

distributed explanatory variables exhibiting high degree of multicollinearity (
considered through Monte Carlo studies. The experiments were conducted to assess and compare the 
performances of the various proposed combined estimators with their separate ones an
estimator using the Mean Square Error (MSE) criterion by ranking their performances at each 
parameter level and summing the ranks over the number of parameters. Results reveal that the 
proposed estimators of CORCPC1, MLPC1 and MLPC12 are genera
while CORCPC12 does the same at increased sample size. Furthermore, the combined estimator 
CORCPC1, recommended for usage, performs better than the Ridge estimator and it is either the best 
or does not perform too differently from the PC1 or PC12 estimator.  
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The Ordinary Least Squares (OLS) estimator has been known 
Best Linear Unbiased Estimator (BLUE) of 

the classical linear regression model when all the fundamental 
violated (Fomby, 1984; 

Maddala, 2002). The use of the estimator for parameter 
estimation when the assumption of independence of 
explanatory variables is not valid (leading to multicollinearity) 
does not only produce imprecise estimates but also large 
standard errors. Consequently, insignificance of the true 
regression coefficient and misleading conclusions are often 

Chatterjee, et al., 2000). 
Regression Estimator 

(Hoerl, 1962; Hoerl and Kennard, 1970), estimator based on 
Principal Component Analysis Regression (Massy, 1965; 

Belsley et al., 1980; Naes 
and Marten, 1988) and estimator based on Partial Least 
Squares (Helland, 1988; Helland, 1990; Phatak and Jony, 
1997) have been developed to tackle this problem. Another 
problem associated with linear regression model is that of non-

of error terms leading to autocorrelation. Using 
the OLS estimator for parameter estimation in the presence of 
autocorrelated error terms has been reported to yield inefficient 
but unbiased estimates, inefficient predicted values and 
underestimated sampling variance of the autocorrelated error  
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terms (Johnston, 1984; Fomby, 1984; 
Maddala, 2002). To compensate for the lost of efficiency, 
several feasible generalized least squares (FGLS) estimators 
including Cochrane and Orcutt (1949), Paris and Winstern 
(1954), Hildreth and Lu (1960), Durbin (1960), Theil (
the maximum likelihood and the maximum likelihood grid 
(Beach and Mackinnon, 1978) and Thornton (1982) 
developed.  Consequently, this paper attempt to combine a 
method of handling multicollinearity (Principal Component 
Analysis) and that of autocorrelation together with the 
motivation of examining the performance of the resulting 
estimators (called combined estimators) in handling 
multicollinearity problem when there is no autocorrelation in 
the model.  
 

MATERIALS AND METHODS
 
Consider the linear regression model of the form:
 

ttt XXY  22110 

),0(~ 2NUt ,
 t = 1, 2, 3...n 

 
For Monte-Carlo simulation study, the parameters of equation 
(1) were specified and fixed as
= 0.6. The levels of multicollinearity among the independent 
variables were sixteen (16) and specified as: 

       131211 xxx  0.7, 0.8, 0.9,
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Fomby, 1984; Chatterjee, et al., 2000; 
To compensate for the lost of efficiency, 

several feasible generalized least squares (FGLS) estimators 
Cochrane and Orcutt (1949), Paris and Winstern 

(1954), Hildreth and Lu (1960), Durbin (1960), Theil (1971), 
the maximum likelihood and the maximum likelihood grid 
(Beach and Mackinnon, 1978) and Thornton (1982) have been 
developed.  Consequently, this paper attempt to combine a 
method of handling multicollinearity (Principal Component 

f autocorrelation together with the 
motivation of examining the performance of the resulting 
estimators (called combined estimators) in handling 
multicollinearity problem when there is no autocorrelation in 

MATERIALS AND METHODS 

linear regression model of the form: 

tt UX 33               (1) 

t = 1, 2, 3...n  

simulation study, the parameters of equation 
(1) were specified and fixed as β0 = 4, β1 = 2.5, β2 = 1.8 and β3 
= 0.6. The levels of multicollinearity among the independent 
variables were sixteen (16) and specified as: 

0.7, 0.8, 0.9, 0.95 and 0.99. 
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Furthermore, the experiment was replicated in 1000 times                 
(R =1000) under four (4) levels of sample sizes (n =10, 20, 30, 
50). The correlated uniform regressors were generated by using 
the equations provided by Ayinde (2007) and Ayinde and 
Adegboye (2010) to generate normally distributed random 
variables with specified intercorrelation. With P= 3, the 
equations give: 
 
X1 = µ1 + σ1Z1                                                                                                                                                                                                    
X2 = µ2 + ρ12 σ2Z1 + Z2                                         (2)     

X3 = µ3 + ρ13 σ3Z1 + Z2 + Z3 

Where m22 = , m23 =  and 

n33 = m33 -  ;  

 

and Zi  N (0, 1) i = 1, 2, 3. In the study, we assumed Xi N (0, 

1), i = 1, 2, 3. We further utilized the properties of random 
variables that cumulative distribution function of Normal 
distribution produces U (0, 1) without affecting the correlation 

among the variables (Schumann, 2009) to generate

. 

 
Having simulated the data, the technique adopted for the 
development of the combined estimator is very much similar to 
that of the Principal Component Estimator when used to solve 
multicollinearity problem.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Just like the Principal Component does its estimation using the 
OLS estimator by regressing the extracted components (PCs) 
on the standardized dependent variable, the combined 
estimators use the FGLS estimators, Cochrane and Orchutt 
(CORC) estimator (1949) and the Maximum Likelihood (ML) 
estimator (Beach and Mackinnon, 1978), by regressing the 
extracted components (PCs) on the standardized dependent 
variable. Unlike the OLS estimator which results back into the 
OLS estimator when all the PCs are used, advantageously, 
since the FGLS estimators require an iterative methodology for 
its estimation, the proposed combined estimators may not 
result back into the FGLS feasible estimators when all the 
possible PCs are used for the estimation. Consequently, the 
parameters of (2) are estimated by the following twelve (12) 
estimators: OLS, PC1, PC12, CORC, CORCPC1, CORCPC12, 
CORCPC123, ML, MLPC1, MLPC12, MLPC123 and Ridge 
as suggested by Scolve (1973) and described in Amemiya 
(1985). The Ridge estimator is an empirical Bayesian 
estimator. The prior is that coefficients are zero with a variance 
estimated from the data as the sums of squared of the fitted 
values of the dependent variable divided by the trace of the 
design matrix. The Ridge parameter in this case is a consistent 
estimate of the residual variance divided by the variance of the 
coefficient prior. 
 

RESULTS AND DISCUSSION 
 

The mean square errors of 0  of  the estimators are 

graphically presented in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.  Graphical Representation of 0  Mean Square Error of the estimators at various levels of multicollinearity and sample size 

 

 
Figure 2. Graphical Representation of 1  Mean Square Error of the estimators at various levels of multicollinearity and sample size 
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The figure does not capture that of MLPC12 and CORC 
estimators because the mean square error of the former is 
generally inefficient while that of the CORC estimator is 
grossly inefficient when the sample size is very small, n=10.  
From Figure 1, it can be seen that the mean square error 
reduces as sample increases and that at each level of sample 
size the mean square error of the estimators reduces as 

multicollinearity 
level increases.  The CORCPC1 estimator is 

generally most efficient estimator in estimating 0 . Figure 2 

shows the graphical representation of the performances of the 

estimators on the basis of the mean square error of 1  having 

removed the estimates of the CORC, ML, CORCPC123, 
MLPC123 estimators and other inefficient estimates. From 
Figure 2, it can be observed that at each level of sample size 
the mean square error of the OLS, CORCPC12 and MLPC12 
estimators increases as multicollinearity level increases. The 
PC1 estimator is generally best while PC12, MLPC1 and 
CORCPC1 estimators compete very favorably.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Figure 3 where the mean square errors of those competing 

estimators of 2  are graphically, it is observed that at each 

level of sample size the mean square error of the OLS, PC12, 
MLPC12, RIDGE increases as the sample size increases. The 
PC1, CORCPC1 and MLPC1 estimators are generally efficient. 
Figure 4 shows the graphical representation of the competing 
estimators having removed the inefficient estimates. It is 
observed that at each level of sample size the mean square 
error of the OLS, PC12 and RIDGE estimators increases as the 
sample size increases. It further shows that the PC1, 
CORCPC1 and MLPC1 estimators are generally efficient. The 
summary of the performances of the estimator in term of their 
total rank over the model parameters at various levels of 
multicollinearity and sample size is given in Table 1. A sample 
of the Mean Square errors of the estimators that were ranked 
when n=20 is provided in the appendix.  From the results in 
Table 1, it can be seen that the PC1 and PC12 estimator, and 
the proposed combined estimators, CORCPC1, MLPC1, 
MLPC12 and occasionally CORCPC12 estimators perform 
better than the OLS estimator.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Total rank of the Mean Square Error of the Estimators over the Parameters at different levels of multicollinearity and sample size 

 
Sample size (n) Estimators Levels of Multicollinearity 

0.7 0.8 0.9 0.95 0.99 
 
 
 
 
 

10 

OLS 28 28 27 26 27 
PC1 6 7 6 8 7 
PC12 14 15 14 16 16 

CORC 48 48 48 46 45 
CORCPC1 11 11 13 12 11 
CORCPC12 29 30 30 30 30 

CORCPC123 43 43 43 43 42 
ML 38 38 38 40 40 

MLPC1 19 18 19 20 19 
MLPC12 21 21 21 21 22 

MLPC123 33 33 34 34 36 
RIDGE 22 20 19 16 17 

 
 
 
 
 

20 

OLS 25 26 27 27 27 
PC1 10 10 9 8 8 
PC12 15 16 15 17 19 

CORC 47 47 47 47 47 
CORCPC1 10 8 8 8 8 
CORCPC12 31 30 31 29 32 

CORCPC123 43 43 43 43 42 
ML 36 36 36 37 37 

MLPC1 22 22 19 18 18 
MLPC12 21 21 23 23 25 

MLPC123 34 34 35 35 35 
RIDGE 18 19 19 20 14 

 
 
 
 
 

30 

OLS 14 30 31 31 31 
PC1 26 10 7 7 8 
PC12 24 14 15 16 17 

CORC 33 47 47 47 47 
CORCPC1 15 11 11 11 11 
CORCPC12 40 22 23 25 25 

CORCPC123 29 43 43 43 43 
ML 24 38 38 39 39 

MLPC1 38 23 18 18 18 
MLPC12 38 20 19 21 21 

MLPC123 22 36 36 35 35 
RIDGE 9 18 24 19 17 

 
 
 
 
 

50 

OLS 19 23 27 28 29 
PC1 28 30 13 10 7 
PC12 5 7 9 14 18 

CORC 35 39 43 44 42 
CORCPC1 44 20 20 11 8 
CORCPC12 16 18 20 26 30 

CORCPC123 33 37 41 42 42 
ML 29 33 37 38 38 

MLPC1 48 40 25 18 19 
MLPC12 12 14 18 23 24 

MLPC123 29 33 37 37 38 
RIDGE 14 18 22 21 17 
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Moreover, the PC1 and CORCPC1 estimators perform better 
than the Ridge estimator even though the performance of the 
CORCPC12 estimator is not different from that of the Ridge. 
The best estimator is either PC1 or CORCPC1 and 
occasionally CORCP12. 
 
Conclusion 
 
In this study, efforts have been made to combine two feasible 
Generalized Estimators with the estimator based on the 
principal components regression and compared their 
performances with that of the existing ones. These combined 
estimators when all the principal components are not used 
generally performed better than the OLS estimator and very 
precisely, the recommended combined CORCPC1 estimator is 
either best or performs not too differently from the best. This 
study has recommended some combined estimators as 
alternative to multicollinearity estimation methods. 
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APPENDIX:  
Table 2. The Mean Square Error of the Estimators of the Parameters at different levels of multicollinearity when n = 20 

 
Sample size (n)  

Estimators 
Levels of Multicollinearity 

MB0 MB1 MB2 MB3 
 
 
 
 
 

0.7 

OLS 0.20554 1.40097 1.73222 1.79485 
PC1 0.20277 0.88171 0.10643 0.93146 
PC12 0.20706 1.28268 1.23922 0.84926 

CORC 0.25781 2.56129 2.50681 1.99219 
CORCPC1 0.097641 1.36008 0.22663 0.49393 

CORCPC12 0.23324 2.18664 1.94607 0.89466 
CORCPC123 0.23388 2.42273 2.42999 1.97505 

ML 0.22269 1.67467 1.97394 1.89747 
MLPC1 7.01814 0.88362 0.11291 0.93698 
MLPC12 0.22187 1.50627 1.39684 0.86168 

MLPC123 0.22291 1.66485 1.9699 1.89452 
RIDGE 0.19946 1.22403 1.46275 1.50425 

 
 
 
 
 

0.8 

OLS 0.18983 1.92185 2.53133 2.54163 
PC1 0.18782 0.84869 0.098916 0.91659 
PC12 0.19037 1.77917 1.42722 0.78608 

CORC 0.23045 3.74919 3.747 2.77029 
CORCPC1 0.092439 1.31131 0.20687 0.48911 

CORCPC12 0.20872 3.31923 2.39273 0.88064 
CORCPC123 0.21047 3.52957 3.61933 2.75124 

ML 0.20389 2.3059 2.85082 2.68019 
MLPC1 7.47266 0.85116 0.10548 0.91894 
MLPC12 0.20216 2.10874 1.6123 0.80989 

MLPC123 0.20418 2.29126 2.84549 2.67604 
RIDGE 0.18447 1.59596 1.98155 1.97937 

 
 
 
 
 

0.9 

OLS 0.17601 3.39758 4.88517 4.69199 
PC1 0.17459 0.82241 0.093593 0.94198 
PC12 0.17561 3.30882 1.78753 0.92484 

CORC 0.20381 7.05734 7.45986 5.00928 
CORCPC1 0.086527 1.27618 0.19501 0.50536 

CORCPC12 0.18769 6.4946 3.1438 1.26824 
CORCPC123 0.18984 6.57107 7.15891 4.98619 

ML 0.18738 4.07326 5.43046 4.93338 
MLPC1 8.0691 0.82688 0.099808 0.94161 
MLPC12 0.18545 3.90694 2.02026 0.99919 

MLPC123 0.18769 4.04533 5.42064 4.92596 
RIDGE 0.17121 2.4659 3.12479 3.01956 

 
 
 
 
 

0.95 

OLS 0.16963 6.27218 9.55116 8.85054 
PC1 0.16839 0.81464 0.091654 0.98552 
PC12 0.1689 6.26109 2.31526 1.61221 

CORC 0.19052 13.22224 14.79694 9.35538 
CORCPC1 0.082969 1.26738 0.19341 0.52984 

CORCPC12 0.17914 11.95322 4.02923 2.58509 
CORCPC123 0.18075 12.27551 14.15545 9.32508 
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 ML 0.1798 7.48927 10.54155 9.29233 
MLPC1 8.49181 0.82101 0.09743 0.98454 
MLPC12 0.17818 7.321 2.6176 1.81164 

MLPC123 0.18012 7.43768 10.52327 9.27881 
RIDGE 0.16505 3.61207 4.37342 4.18455 

 
 
 
 
 

0.99 

OLS 0.16413 29.18772 46.70833 41.18924 
PC1 0.16293 0.81372 0.091046 1.06605 
PC12 0.16331 28.75434 5.66693 9.47457 

CORC 0.17887 59.93150 72.28310 43.30394 
CORCPC1 0.078819 1.26846 0.19605 0.58000 

CORCPC12 0.17356 49.48396 9.30086 15.69635 
CORCPC123 0.17423 55.79362 69.18285 43.19335 

ML 0.17334 34.54049 51.2222 43.21194 
MLPC1 9.04656 0.82131 0.096142 1.06575 
MLPC12 0.17220 33.03012 6.41319 10.81322 

MLPC123 0.17367 34.31173 51.13714 43.15072 
RIDGE 0.15972 5.27550 4.77257 5.05291 
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