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INTRODUCTION 

 
This study entails numerical methods for modelling wave millimetre propagation in range
equation (PWE). Leontovich (Fock, 1965; Ryan, 1991
solving elliptic partial differential wave equation. The PE method was applied to solve electromagnetic wave propagation abov
problem. Leontovich and Fock (1991) in 1946, used the PE method to solve trans
which was a significant breakthrough in electromagnetic wave propagation modelling.
parabolic wave equation, it took approximately 30 years before a practical algorith
problem of modelling ionospheric radar propagation by developing the Split
introduced the SSFPE algorithm to solving underwater acoustic
sound propagation (Malyuzhinets, 1959). The split
evolution of the fast Fourier transform (FFT) algorithm. This set up an efficient numerical solution to the Leontovich and Fock parabolic wave 
equation. Ko, Sari and Skura applied the SSFPE method for radar propagation to study anomalous microwave propagation in the troposphere
(Fock, 1965; Ryan, 1991; Leontovich, 1946). The SSPFE was also applied by Dockery and Konstanzer to analyse phased radar performance. 
Recently, several authors have developed electromagnetic PE models 
in radio waver propagation over irregular terrain and underwater acoustics. Most of its application assumes low
propagation of EM waves (Ryan, 1991; Malyuzhinets
increase. Ray theory is an efficient technique for high frequencies but become less accurate when large scale (comparable to 
atmospheric irregular surfaces are encountered (
restrictions of ray theory. As stated earlier, Hardin and Tappert developed the very efficient Fourier/split
Claebout introduced finite-difference codes for geophysics 
approximation was accredited to Tappert and Ngeim
boundary by a series of knife-edge diffractors (Radder
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ABSTRACT 

This letter explores the parabolic equation method used in describing millimetre wave propagation 
and challenges it encounters when it interacts with rain drops in Yenagoa, Bayelsa State. This 
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diffraction and refraction effects by rain drops using Yenagoa climate weather averages for 2022 from 
weather.com.  
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This study entails numerical methods for modelling wave millimetre propagation in range-dependent environments using the parabolic wave 
, 1991) was the first to purpose the parabolic wave equation method in 1944 

solving elliptic partial differential wave equation. The PE method was applied to solve electromagnetic wave propagation abov
in 1946, used the PE method to solve trans-horizon radio wave propagation above spherical earth problem 

which was a significant breakthrough in electromagnetic wave propagation modelling.  After Leontovich and Fock 
parabolic wave equation, it took approximately 30 years before a practical algorithm was reported. Hardin and Tappert 
problem of modelling ionospheric radar propagation by developing the Split-step Fourier parabolic equation (SSFPE) algorithm. Tappert in 1977 
introduced the SSFPE algorithm to solving underwater acoustic problems which became prominent for evaluating range

. The split-step Fourier PE gained prominence due to advances in computer adware technology and 
lgorithm. This set up an efficient numerical solution to the Leontovich and Fock parabolic wave 

Ko, Sari and Skura applied the SSFPE method for radar propagation to study anomalous microwave propagation in the troposphere
. The SSPFE was also applied by Dockery and Konstanzer to analyse phased radar performance. 

Recently, several authors have developed electromagnetic PE models (Ryan, 1991). The parabolic wave equation method has gained prominence 
n radio waver propagation over irregular terrain and underwater acoustics. Most of its application assumes low

Malyuzhinets, 1959). Over the years, interest on the problem of large
increase. Ray theory is an efficient technique for high frequencies but become less accurate when large scale (comparable to 

(Radder, 1979). The parabolic equation method is not constrained by asymptotic frequency 
restrictions of ray theory. As stated earlier, Hardin and Tappert developed the very efficient Fourier/split-step solution for acoustic problems and 

difference codes for geophysics application (Hardin, 1973; Radder, 1979). The development of terrain masking 
approximation was accredited to Tappert and Ngeim-Phu, it was used to advance the field of the boundary, which is like representing the 

Radder, 1979).  
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dependent environments using the parabolic wave 
was the first to purpose the parabolic wave equation method in 1944 as a solution to 

solving elliptic partial differential wave equation. The PE method was applied to solve electromagnetic wave propagation above plane earth 
opagation above spherical earth problem 

After Leontovich and Fock (1946) developed the 
m was reported. Hardin and Tappert (1959) solved the 

step Fourier parabolic equation (SSFPE) algorithm. Tappert in 1977 
problems which became prominent for evaluating range-dependent underwater 

step Fourier PE gained prominence due to advances in computer adware technology and 
lgorithm. This set up an efficient numerical solution to the Leontovich and Fock parabolic wave 

Ko, Sari and Skura applied the SSFPE method for radar propagation to study anomalous microwave propagation in the troposphere 
. The SSPFE was also applied by Dockery and Konstanzer to analyse phased radar performance. 
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The effect of ocean surface and bottom roughness on shallow water acoustic propagation was evaluated by Rouseff and Ewart (1973; Radder, 
1979). Kuttler (Mireille Levy, 2000) utilize a global conformal map to evaluate scattering from a sinusoidal boundary with results been 
consistent with Bragg scattering theory.  (8) developed a model by tilting and steering the field to counteract the flattening of the surface which 
seem similar to that of Beilis and Tappert technique without explicit coordinate transformation. Donohue et.al developed a hybrid scheme that 
alternates between piecewise linear shift map and terrain masking when slopes are encountered (9). The scope of this study is focussed on a 
detailed analysis of millimetre wave diffraction and refraction by rain drops using the Split-step Fourier PE algorithm. To achieve this, there is 
need to have significant knowledge of rain drops parameters such as rain drop size distribution (DSD), rain-drop diameters, effective dielectric 
constant, shape of rain drops, rain rate and temperature. We develop the desired model for propagation of electromagnetic radiation in rain media 
by making some important assumptions. Here we adopt Debye model for estimation of the effective dielectric constant of water and consider a 
linear, isotropic nonionized medium. The electrical properties of this medium were modelled as a lossy dielectric. We apply Maxwell’s equations 
to derive the electromagnetic propagation model. 
 
Maxwell’s Equation: The source of EM radiation is assumed to emit linearly polarized, monochromatic radiation with harmonic time 
dependence � given by exp (���). The source free monochromatic Maxwell’s equation in rationalized mks units is given below. 
 

 ∇ ∙ � =  � ��   (1) 
 
∇ × � =  −����    (2) 
 
 ∇ ∙ � = 0    (3) 
 
 ∇ × � = � + �� ��  (4) 
 
The Field components, �̅, � ̅, � and � denotes the electric field, electric flux density, magnetic flux density, and the magnetic field. Their 
sources, the charge density � and current density � are functions of the spatial co-ordinate (�, �, �). The propagation media is characterized by  
The electric flux density � ̅ and electric field � ̅ are mathematically related by 
 
� =  �����    (5) 
 
Similarly, magnetic flux density and the magnetic field are related by  
 
� =  �����   (6) 
 
To describe the EM wave propagation in an inhomogeneous varying space, we use the vector identity expressed below to evaluate equation (2) 
 
∇ × ∇ × ! =  ∇(∇ ∙ !) − ∇"!     (7) 
 
This becomes                           
 
∇ × ∇ × ! =  ∇(∇ ∙ �) − ∇"�   (8) 
 
Taking the left-hand side of equation (8) we obtain  
 
$ × ($ × �) =  −���($ × �)  (9) 

 
Substituting equation (4) into (9) yields  
 
  $ ×  ($ ×  �) =  −���(� +  ��'� )   (10) 

 
Where � =  (� ̅, for non-conducting or charge free medium (( =  0)the current density � =  0. Equation (10) reduces to the form 
 
$ ×  ($ ×  � ̅)  =  −���(��'�) 
 
$ × ($ × �)  =  �2�'� 
 
For a lossless or non-conducting media, the propagation constant *2 =  −�2�', since the wave is not attenuated as it propagates, we introduce 

the wave number + =  �√�'. From these assumptions we can say that  
 
 
−*2 =  +2 

 
Taking the both the left-hand side and right-hand side of (8) yields  
 
  �2�'�- =  $($ ∙  �-) −  $2�-  (11) 
 
For a homogeneous media this becomes  
 
$2�- +  �2�'�- =  0   (12) 
 
 $2�- +  +2�- =  0          (13) 
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Where $ ∙  � ̅ =  0but for inhomogeneous media $ ∙  � ̅ =  �and$ ∙  � ̅ ≠ 0in a time varying space where '/ = 02. 

 
Hence, equation (13) for inhomogeneous media can be written as  
 
  $2�̅ +  +2� ̅ =  $($ ∙  � ̅)    (14) 
 
From equation (5) we can express the electric field � ̅ as  
 

     � =  3
45

6
78  (15) 

 
Applying product rule of differentiation 
 

($ ∙  �) =   3
45

$ ∙ 9 6
78: =   3

45
3

78  $ ∙  � + 3
45

 $ ∙  � ∙ ∇ 9 3
78:     (16) 

 
 
Substituting ($ ∙  �) = 0 in (16) yields 
 

($ ∙  �) =  0"� ∙ ∇ 9 3
78:    (17) 

 

$2� ̅ +  +2� ̅ =  0"� ∙ 9<"
7=: ∇(0) (18) 

 

($ ∙  �) = − "
7 � ∙ ∇(0)   =  −2� 3

7 ∇(0)  (19) 

 ($ ∙  �)   =  −2 � ∙ ∇(ln (0))  (20) 
 
∇($ ∙  �)   =  ∇{−2 � ∙ ∇(ln (0)) }  (21) 

 
Hence, the inhomogeneous Helmholtz equation can be expressed as  
 
$2� ̅ +  +2� ̅ =  ∇{−2 � ∙ ∇(ln (0)) }  (22) 

 
Derivation of the Parabolic Wave Equation  

 
Using a simple model which describe the propagation of a reduced function  
 

 ψ(�, �) = C(�, �)DEFG  (23) 
 
associated with the direction of propagation �. Where C(�, �) can be expressed as 
 

C(�, �) = Ψ(�, �)D<EFG  (24) 
 
The Helmholtz equation of the reduced function is obtained by decoupling Maxwell’s equations and can be expressed as  
 
∇"Ψ + +"0"(�, �)Ψ = 0  (25) 
 
Where 0"(�, �) is the refractive index and + is the wavenumber. The refractive index 0"(�, �) is be assumed to possess smooth variations. The 
reduced function implies that the propagation energy varies slowly at angles close to the paraxial direction (6) 
.  
The Laplacian of Ψ(�, �) can be expressed as 
 

 ∇"Ψ = (∇"C + 2�+∇C − +"C)DEFG  (27) 
 
Where Ψ is taken as the product of a plane wave solution, substituting equation (27) into equation (25) yields 
 

   ( ∇"C + 2�+∇C − +"C)DEFG + +"0"(�, �) CDEFG = 0  (28) 
 
 ∇"C + 2�+∇C + +"0"{(�, �) − 1} C = 0  (29) 
 

The Laplacian operator for 2D can be expressed as ( I8
IG8 + I8

IJ8), in the atmosphere where 0 − 1 is small, we neglect 
I8

IG8 as small (paraxial 

approximation) and equation (29) becomes 
 
I8K
IJ8 + 2�+ IK

IG + +"(0" − 1)C = 0   (30) 

 
Where equation (1.31) is the standard parabolic equation. Equation (1.31) by method of separation of variables can be written as 
 

2�+ IK
IG = (1 − 0")+"C − I8K

IJ8  (31) 
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Which can be expressed as 
 
IK
IG = � L(1 − 0")+" − M8

"FN C  (32) 

 

Let consider ! =  (1 − 0")+" − M8
"F  and substitute ! into equation (32) 

 

These yields 
 
IK
IG = �!C  (33) 

 
Taking like terms       
 

  
IK
IK = �!�  (34) 

 
The solution of the parabolic wave equation becomes  
 

C(�� + Δ�, �) = C(��)DEOΔG  (35) 
 
It is worthy of note that equation (30) can be factored out to obtain 
 

L I
IG + �+(1 − P)N L I

IG + �+(1 + P)N  (36) 

 
This gives us  
 
IK
IG = −�+(1 − P)  (37) 

 
IK
IG = −�+(1 + P)  (38) 

 
Where P is the pseudo-differential operator and is defined by 
 

P =   Q 3
F8

I8
IJ8 + 0"(�, �)  (39) 

 
Equation (37) is the outgoing parabolic equation and equation (38) is the incoming parabolic wave equation. Considering the propagation 
medium as homogeneous with refractive index 0, the field component Ψ satisfies two-dimensional scalar wave equation 
 
I8R
IG8 + I8R

IG8 + +"0" = 0                                           (40) 

 
The refractive index varies with the range � and height � and equation (40) is a good approximation provided 0 varies slowly with wavelength. 
It is worth noting that equation (40) is not exact (7). If the propagation medium is vacuum, the standard parabolic wave equation in (40) is 
expressed as 
 
I8R
IJ8 + 2�+ IK

IG = 0    (41) 

 
The solution of equation (1.43) can be expressed as 
 

C(�� + Δ�, �) = C(��)DES8
8TΔG

  (42) 
 
The Split Step Fourier Transform Solution 

 
The split-step Fourier method is a very efficient PEM which separate the refractive effect from the diffractive part of the propagator. Considering 
a two-dimensional scalar wave equation for horizontally and vertically polarised wave. Hardin et.al introduced the split-step Fourier method 
which transforms the rough surface problem with propagation through a sequence of phase screens (7).  
 

The standard parabolic equation (SPE) in equation (30) can be written as 
 
IK
IG = EF

" L 3
F8

I8
IJ8 + (0"(�, �) − 1)N C     (43) 

 

Let  ! = 3
F8

I8
IJ8   (44) 

 
� =  0"(�, �) − 1  (45) 
 
 Equation (43) becomes 
 
IK
IG = EF

" {! + �}C  (46) 

 

22085                           Aguiyi, Nduka Watson et al. Attenuation of millimetre wave by spherical rain drops using parabolic wave equation method 



The analytic solution of the SPE is  C(� + ∆�, �) =  C(�, �)DVT
8 ∆G(OWX)  (47) 

 

Using  Y = EF∆G
"   (48) 

 
Equation (47) yields                   
 

C(� + ∆�, �) =  C(�, �)DZ(OWX)  (49) 
 
Equation (47) is the split-step solution which represent the field propagating through series of phase screens. The field is first propagated through 
a slice of homogeneous medium characterised by the exponent of !. In this paper, we predict the attenuation by raindrops using climate weather 
averages of 2022 in Yenagoa (7), Bayelsa State (See Table 1). Attenuation by rain drops depend on physical and electrical properties of rain 
drops such as drop size distribution (DSD), diameter (D) of rain drops, permittivity of water at specific temperature and propagating frequency. 
Rain drops diameter range from 0.1\\ − 8\\ as drops with diameter larger than 8\\ are unstable and breakup (7). Hence, high frequency 
approximation methods should be used at millimetre wavelength. From Table 1, we can see that the rain rate per hour is less than 1\\/ℎ/. With 
diameters less than 1.5\\ − 2\\, we assume that the shape of rain drops is spherical (7). In other cases, it is oblate ellipsoidal. The effective 
permittivity of water was calculated by Liebe’s formula and the rain drop spectrum adopted is Marshall-Palmer spectrum (7).  
 

Table 1. Yenagoa Climate Weather Averages for 2022 [7] 

 
Month Day Time Temperature Night Time Temperature Rain Days Monthly Rain Rate (\\) Hourly Rain Rate (\\/ℎ/) 
January 306_ 296_ 7 117.85 0.1584 
February 305_ 296_ 11 176.29 0.2369 
March 304_ 297_ 17 236.73 0.3182 
April 304_ 297_ 18 258.69 0.3477 
May 303_ 296_ 18 332.38 0.4467 
June 301_ 295_ 22 452.29 0.6079 
July 299_ 295_ 23 508.99 0.6841 
August 299_ 294_ 22 526.86 0.7081 
September 300_ 295_ 24 590.99 0.7943 
October 301_ 295_ 22 478.90 0.6437 
November 303_ 296_ 17 330.11 0.4437 
December 305_ 296_ 6 104.68 0.1407 

 
In this study, we shall investigate millimeter wave propagation on flat earth surface in a rain medium (7)-(8). Here, we assume that the rain drops 
are spherical in order to evaluate its interaction with an incident EM field by adopting split-step solution of the parabolic equation method (7)-(8). 
The aforementioned assumption is valid at low rain rate intensity. For high intensity rain, it is more realistic to model rain drops as oblate 
spheroids (7)-(8).  
 

 
 

Figure 1. Plots of Antenna Patterns for Parabolic Equation (PE) Source Modelling Here we consider a PE source  

with antenna Gaussian beam pattern defined as 
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The initial field profile `(0, a)was obtained via inverse FFT of the far-field antenna pattern with specified height ��, antenna beam width bcd  
and tilt angle beEfe. This is shown in the transverse-wavenumber (a) domain as 
 
` (0, a)  =  g (a)D�a(−�a�0 ) −  g (−a)D�a(�a�0 )   (50) 
 
which obeys Dirichlet boundary condition and  
 
` (0, a) =  g (a)D�a(−�a�0 ) +  g (−a)D�a  (51) 
 
Neumann boundary condition, where `(0, a) is the forward Fourier transform of C(�0, �). C(�0, �) is the initial field profile and incident 
propagating field of the PE which we can describe as the field at range � =  0. Introducing antenna tilt we can evaluate C(0, �) by rewritting 
g(a) as g(a −  +0h�0b��i�).  The standard PE in equation 43 can be solved by direct decomposition from its spatial form (�)−domainto spectral 
form (a)–domainvia Fourier transform. Real problems have refractive index 0 as a function of range � and height �0(�, �), which is appropriate 
as the equation is solved at each small range-step size ∆�, which is chosen small enough so that within any interval the refractive index can be 
assumed constant with respect to �.  
 
The numerical split-step parabolic equation solution for � =  1, 2, . . . jis given as  
 

C(�0 + �∆�, �) = D�a(� F5
" (02 

− 1)∆�)k<3(D�a(−� M8∆G
"F5

))k(C(�0 + (� − 1)∆�, �)))  (53) 

 
This equation can be used to calculate C(�, �) along � with steps of ∆�, for known initial source distribution C(0, �). We can use an array to store 
the transverse -field profiles of l� vertical height points and l� discrete ranges, with replacement. Here, the initial field C(0, �) profile obtained 
from an antenna beam pattern is propagated longitudinally from �0to �0 +  ∆� for � =  1 using equation (53)until the solution C(�0 +  ∆�, �) is 
obtained. This is used as the initial field profile for the next step (� =  2) to obtain C(�0 +  2∆�, �), this process is repeated for � =
 1,2, . . j and the vertical field profiles are computed for each range step until the required range is reached.  
 

RESULTS AND DISCUSSION 
 

The PE method was used to model millimetre wave propagation in rain over a flat earth at temperature m = 306_ and rain rate 0.1584 \\/ℎ/ 
in Yenagoa city, Bayelsa State. The simulation was implemented for both rain intensity and effective refractive index0 that are uniform through 

the rainfall region.  A Gaussian source field that is horizontally and vertically polarized at �n = 100 \, with a beamwidth of 1°, elevation or tilt 

angle 1°, and frequency 300 p��. Here we consider one obstacle that is modelled over the flat earth using trigonometric functions. The location 
of the obstacle is between 3 − 5 +\ with height 50 +\. Figure 2 and 3 illustrate variation of field profile over range as the field travels through 
flat earth with rain drops with rain rate 0.1584 \\/ℎ/, temperaturem = 306_and effective refractive index 0 = 2.58125 + 1.1304� with 

maximum heights5 +\ and 10 +\ , earth radius /s = 6371 +\.  The figures below show diffraction and reflection effects through the 

range 0 − 1 +\ for flat earth surfaces with maximum heights 5 +\ and  10 +\respectively. 
 

 
Figure 2. Field profile over a flat earth at maximum height tuv 
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Figure 3. Field profile over a flat earth at maximum height wxu 

 

 
 

Figure 4. Propagation loss (PF) versus height (m) over a flat earth with rain rate  

x. wtyz vv/{| 
 

 
 

Figure 5. Propagation loss (PF) versus height (m) over a flat earth with rain rate x. wtyz vv/{| 

 

We can see that diffuse reflections increases with increase in height of the earth surface. Figure 4 and 5 illustrate the propagation loss (PL) 
as a function of height in rain medium with maximum height � = 10 +\ for both horizontal and vertical polarizations.  
 

 
 

Figure 6. Propagation loss (PF) versus Range (uv) over a flat earth with rain rate x. wtyz vv/{| 
 

The field profiles vary similarly in both cases for maximum range � = 50 +\. The flat earth surfaces show less diffuse reflections than irregular 
terrains assumed to be wet as shown in both cases of horizontal and vertical polarizations. Figure 4 and 5 illustrate the propagation loss (PL) as a 
function of range in rain medium with maximum height� = 10 +\ for both horizontal and vertical polarizations. The field profiles vary similarly 
in both cases for maximum height � = 10 +\. The flat earth surfaces show less diffuse reflections than irregular terrains assumed to be wet as 
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shown in both cases of horizontal and vertical polarizations. The propagation loss is highest at range � = 800 +\ and lowest at = 0 +\. This 
explains that low altitudes, multipath propagation effects are not significant.  

 
 

Figure 7.  Propagation loss (PF) versus Range(uv) over a flat earth with rain rate x. wtyz vv/{| 

 

CONCLUSION 
 
The parabolic equation method was applied to model millimetre wave propagation in rain medium with irregular terrain conditions. The results 
obtained illustrate that the PE model can predict multipath propagation effects as well as diffraction and refraction of millimetre wave by rain 
drops. The split step Fourier method provides an efficient numerical approach for computing millimetre propagation characteristics in variable 
terrain. 
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