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The forage mass of herbaceous and woody plants is the main source of food for livestock in pastoral
rangelands in the Sahelian and Sub-Danian zones. This studv aims to assess the biomass of woodv
and herbaceous species using the normalized difference vegetation index NDVI derived from
multispectral Red-Green-Blue and near-infrared drone images and nhotogrammetric parameters. A
DiiPhantom multispectral UAV was used to collect images from four pilot sites in Niger and Benin.
Ground measurements of herbaceous biomass using the integrated vield square method and
estimation of woodv leaf nphvtomass using dendrometric parameters calculated with allometric
eauations were used to assess the nerformance of the drone-based model. The results showed that the
herbaceous biomass estimated with the drone had an R? coefficient of determination of 0.59-0.86 and
relative mot mean sauare estimation errors (RMSEr of 1986% to 26.84% with ground
measurements. at a sienificancelevel ofp <0.0001. As for woodv biomass, an R? 0f0.580.69 and an

RMSEr 0f14.16% to 39.55% at a p-value <0.0001 were obtained.
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INTRODUCTION

Livestock plays an important role in the national economies of
Sahelian countries, contributing 40% of agricultural Gross Domestic
Product (GDP) and 44% of agricultural GDP in West African
countries (CEDEAO, 2008). In Niger, livestock farming is practiced
by over 87% of the population, making it the country's second most
important economic activity after agriculture. It accounts for almost
11% of national added value and 40% of agricultural GDP (CILSS
/RPCA, 2010). In Benin, this sector is also the country's second-
largest agricultural activity, accounting for 2.4% of GDP (FAO,2015).
Despite its impottance in the economy, the livestock farming system
remains traditional in these two oountres. It is practiced in a
traditional way and is essentially based on the exploitation of natural
fodder subject to strong inter- and intraseasonal variability (Garba et
al., 2015).

In both countries, natural pastures are essentially made up of annual
forage biomass (hebaceous and woody), which is also the main
source of animal feed (Hiernaux et al., 2015).Data oollection on
forage biomass in this region is generaly carried out by destmctive
sampling in the field, a costly, time-consuming and energy-intensive
method, particularly in the semi-arid zones of the Sahel where
productivity per unit area is low and highly varable from one year to
the next. In recent decades, the use of spatial remote sensing has
become an impoitant approach to estimating biomass(Barrachina et
al., 2015; Dioufet al., 2015; Garba et al., 2015; Reinermann et al.,
2020). Vegetation indices derived from satellite data are widely used
to monitor biomass productivity(Diouf et al., 2015; Gao et al.,
2013). By combining these indices with field measurements, it is
possible to assess the quantity of biomass produced and provide
decision-makers with wuseful information for natural resource
management. This approach also reduces or eliminates the need for
time-consuming field measurements, while characterizing vegetation
and mapping pastoral resources (Bossoukpe, 2021; Taugourdeau et
al., 2022). The accuracy of biomass estimates depends on the
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resolution of the images used. To obtain an accurate estimate, it is
often recommended to use higher spatial resolutions than those
generaly provided by satellite images (Read et al.,, 2003). However,
images from very high-resolution commercial satellites, such as
Deimos-2, Geo Eye-2, Quick Bird or WorldView 2, are expensive and
can be affected by cloud cover depending on the period. In some
cases, the high cost may make the use of these images uneconomical,
particularly if several images from different dates are required, or if
large areas need to be covered. Drones are an interesting solution in
these contexts, as they are nore affordable, flexible, can fly below the
clouds and produce very high-resolution images with centimeters-
level accuracy (Ndamiy ehe et al., 2020).

Processing these images using photogrammetric techniques such as
"Structure fifom Motion" generates ortho-images and Digital Surface
Models (DSMs), which allow us to estimate the height, volume and
surface of objects (Cunliffe ef al., 20 16;Ani fantis et al., 2019; Sarron,
2019; Bourgoin et al., 2020;).Vegetation indices derived from ortho
mosaics can be calculated using RGB sensoms(Lussem et al., 2019;
Taugourdeau et al., 2022) or multispectral captures (Surault et al.,
2018). These vegetation indices, combined with biophysical data in
the field, allow us to estimate the phytomass (herbaceous and woody)
(Bossoukpe et al.,2021; Peciia et al., 2021)r crop biomass
(Roupsard et al., 2020). Despite this, there are few studies on the use
of drones to study natural vegetation in Sudanian and Sahelian zones.
Most scientific studies of natural vegetation in Africa have been
carried out in humid tropical regions (Ngabinzekeet al., 2016). In
addition, studies using the "Structure from Motion" (SFM) process
have mainly been carried out in temperate grasslands and on a local
scale(Lussem et al.,2019; Wijesingha e al., 2020). The aim of the
present study was to evaluate the performance of a drone system
equipped with nmultispectral sensorsin estimating forage biomass in
pastoral rangelands of the Sahelian and Sudanian zones of West
Africa, in orderto develop a decision-making tool.

MATERIALS AND METHODS

Study Area: The study was conducted in two countries: Niger, in the
Dosso region, and Benin, in the Alibon department. In the Niger
region, the communes of Falmey and Dioundiou were grouped
to gether to form the study area, located between latitudes 12°0'0" and
13°0'0" Notth, and longitudes 2°0'0" and 4°0'0" East (Figure 1). The
climate of this region is Sahelo-Sudanian, characterized by two
distinct seasons: a long dry season lasting eight to nine months,
generally from October to May, and a short rainy season from June to
September (DRE 2022). The region's vegetation comprises a number
of formations, including arbustive savannahs on the plateau, parks
with Vitellaria paradoxa and Parkia biglobosa, and the Dallols Bosso
and Maouri roneraie, whose key species is Borassus aethiopum
(Mahamane, 2004).

In Benin, the study was carried out in the communes of Malanville
and Gogounou, located in the north-western Alibori department,
between latitudes 11°0'0" and 12°0'0" North, and longitudes 2°0'0"
and 4°0'0" East (Figure 1). The region's climate is tropical Sudanian,
with two distinct seasons: a dry season from October to Apiil, and a
rainy season from May to September. Average annual rainfall ranges
from 677 mm in the notth to 1060 mm in the south. Average monthly
temperatures range from 25°C in the south to 33°C in the north
(Météo Bénin, 2018).The region's vegetation consists mainly of
savannah dotted with patches of open forest, crossed by gallery
forests. These savannah-cultural formations are frequently exposed to
the risk of bush fires during the dry season (Hountondji, 2008).

Overall methodology: To carry out this study, we have set up a
sampling protocol that combines various techniques, including
photogrammetry, stereoscopy and the use of ground data. The aim of
this protoool is to analyze biomass using very high spatial resolution
images acquired using a drone (Figure 2).
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Figure 2. Overall methodology of study

Sam pling sites: This study was carried out on four pastoral test sites
located in the Dosso region of Niger and in the Alibori department of
Benin. The sites are located in the communes of Falmey and
Dioundiou in the Dosso region, and in the communes of Malanville
and Gogounou in the Alibori department (see Figure 1). The choice of
these sites was based on several crtera, including the north-south
gradient along the cross-bord ertranshumance corridor (Dosso - Nord -
Benin), the availability of in situ data, the bioclimatic gradient and
environmental accessibility. The characteristics of the sampling sites
are presented in Table 1.

Collecting device : The data collection system was set up at the four
pastoral sites. On each site, a total of 16 one-hectare plots were
delimited, or four plots per site in Niger and Benin. Two types of
measurement were carried out: drone over flight measurements and
ground measurements, including herbaceous and woody species.
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Table 1. Chara cteris tics of sampling sites Planning and acquisition of aerial images by drone: The planning
and acquisition of aerial images by drone was carried out
N  Site name Agroecological zone Communes Country methodically and precisely.
1 Kara Sahelo- Sudanese Falmey Niger R EALEA AR AR AR AR AR £ A £ EA £ A £ £ A £ £ A £ £ SR SR LSS A SR SRR AR
2  Tombomoché Sudanese Dioundiou  Niger
3 Golabanda Sudanese Malanville  Bénin
4 Oroubeidou Sudanese Gogounou  Bénin

General presentation of the measure system: The measurement
system used in this study is a DJI (Da Jiang Innovation) drone,
specifically the Phantom 4 mnwltispectral model, which offers
extremely high resolution and mnultispectral imaging capabilities
(Figure 3). It is a four-motor quadcopter drone powered by a 5870
mAh LiPo (lithium polymer) smart battery, operating at 12.5 volts and
offering 28 minutes ofautonomy. With a wingspan of20 cm, a weight
of 1487 g, a maximum speed of 54 km/h and a maximum flight
altitude of 500 m, this drone is capable of exceptional performance.
The Phantom4's multispectral imaging system comprises six cameras
with 1/2.9-inch CMOS sensos, including an RGB camera and a
multispectral camera array. This array comprises five cameras
covering the blue (450 nm), green (560 nm), red (650 nm), red edge
(730 nm) and near infrared (840 nm) bands. Each camera has a
resolution of 2 MP (megapixels) and is mounted on a three-axis
stabilized nacelle (Figure 4). To guarantee accuracy and image
quality, all the cameras in the system undergo a calibration process.
This process enables radial and tangential lens distortions to be
measured and recorded in the metadata of each image, facilitating
subsequent prerocessing. Images are acquired automatically, at a
rate previously defined dunng flight preparation. What's more, the
drone is equipped with an on-board D-RTK antenna that provides
positioning data accurate to the nearest centimeter. Safety is also
taken into account with multidirectional obstacle detection activated
by front, rear, bottom and infrared optical sensors. An integrated
spectral sensor, positioned above the drone, captures solar irradiance
to maximize the accuracy and consistency of data collection at
different times of the day. The system also uses autonomous flight
technology based on ultrasonic sensors to reduce the risk ofaccidents.
In addition, it is equipped with a GPS-BeiDOU-Galileo; GPS-
GLONASS-Galileo location system to ensure precise localization.
Communication between the drone and the ground station is via a
radio control system operating in the 2.400 to 2.4835 GHz frequency
range. Under normal conditions, with no obstacles hindering radio
signal transmission, this communication can extend over a maximum
distance of 10 km. This enables real-time visualization of image and
video sequences on the contrl station. Thanks to its digital
technology, the radio control unit has an autonomy of'1.5 houss.
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Figure 3. Drone DJI Phantom 4 multispectral and accessories (a)
DJI Phantom 4 mulftis pectral b) Radio control. c) Battery. d)
Nacelle. e) USB card.f) Charging platform. g) Propellers. h) Cable
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Figure 4. Presentation of the UAV sensor

We used the Gspro (Ground Station Pro) application to configure the
drone and plan the flight in automatic mode. Aerial images were
captured at a flight altitude of 90 m for each of the four pastoral sites,
with a ground resolution of 4.9 cm/pixel. Each image covers a
footprnt of 1600 x 1300 m and is captured in the visible light
spectrum (Red, Green and Blue) as well as the near infrared. Flights
took place between 9amand 12pm to minimize shad owing effects on
the images. In addition, flights were timed to coincide with ground
data collection at each site, thus ensuring optimum synchronization.
The average horizontal flight speed was maintained at 5 nv/s to ensure
accurate image acquisition, thus avoiding SD card recording problems
that could occur at high speeds. Frontal ovedap of around 70% and
lateral overlap of around 75% were applied between photos taken on
the same line and row, respectively. These levels of overlap enable
images to be properly stitched together durng photogrammetric
processing, ensuring high-quality results (Ngabinzekeer al., 2016;
Khun, 2021). Flight planning was carried out using a grid and
polygonal plan, defining the lines and rows the drone was to follow
duning the flight. A total of four flight plans were drawn up, each
comprising five parallel flight lines or transects in a north-south
direction. This enabled us to fly over the four-pastoral par-courses,
each covering an area of one hectare, ensuring complete coverage of
the study area (Figure5).

Blue line = site boundary; Green line = ight line; Flight altitude =90 m; Horizontal
flight speed = 5 M/S; Longitudinal overlap = 70% and lateral overlap = 75% Image
resolution =4 .8 CM/PX

Figure S. Flight planfor sitel

Field measurements: Herbaceous biomass data were collected in
October 2022, corresponding to the vegetative growth period of
Sahelian and Sudanian rangelands. Once the flyover was completed,
we randomly selected ten one-square-meter (1m?) quadrats from each
of'the 16 one-hectare plots.
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GPS ooordinates were collected from the center of each quadrant.
Biomass was estimated using the integral harvesting method for yield
squares (Daget & Poissonet, 1971)for each sampling point. This
method consists of cutting all herbaceous species present in the 1m?
quadrant at ground level, including grasses, legumes and others. All
individuals within the quadrant were harvested. The fresh biomass
obtained was weighed using aload cell. After being dried in an oven,
the biomass was weighed again to obtain the dry weight. The biomass
was then transported to the Carbon Laboratory ofthe Centre Regional
AGRHYMET (CRA), where it was oven-dried for three days at 70°C
(Figure 6).

Figure 6. Biomass oven drying at 70°C

Tree measurements were carried out in January 2023 on 16 plots
distributed over the four sites in the study area. On each of the 16
plots, we selected 10 mature trees (> 1.3 min height; > 5 cmin trunk
diameter) to cover the diversity of tree morphology present. This
selection enabled us to obtain small, medium and large-sized woody
individuals. D en-drometric measurements were taken on single-trunk
trees at ground level and on shmubs at 30 cm above ground level. We
recorded the following parameters: stem diameter, total height (Ht)
and North-South (N'S) and East-West (EO) crown diameters.

Calculation of crown area: Crown area was calculated using the
following formula to first obtain the average horizontal projection
radius (R) from the average crown diameters: R = (DH (NS) + DH
(EO)) / 4, where R represents the average radius, DH (NS) is the
crown diameter in the North-South direction, and DH (EO) is the
crown diameter in the East-West direction. The crown area (SH) was
then calculated for each tree using the universal formula for the area
ofacylinder: SH = nR2.

Determination of tree height (CMH) using photogrammetry:
Orthophotos obtained from drone flights were processed with
PIXI4D software to obtain Digital Surface Models (DSMs) and
Digital Terrain Models (DTMs). Tree heights were determined by
calculating the difference between DSMs and DTMs using ArcGIS
software and the following formula: CHM = MNS — MNT, where
CHM represents the canopy height model, MNS is the Digital Surface
Model (where the pixel value represents the object's altitude and
height) and MNT is the Digital Terrain Model.

Aerial image analysis: Multispectral images taken by the Phantom4
were processed using the photogrammetry sofiware PIX4D mapper
4.5.6. PIX4D is a robust commercial sofiware package specifically
designed for processing images from UAVs. It is based on Structure
from Motion algorthms and also incorporates computer vision
techniques and photogrammetric algorithms ( Puliti er al., 2015;
Lussem et al.,2019; Panday et al., 2020;; Wijesingha et al., 2020), in
order to achieve high acauracy in aerial image processing (Ruzgien¢ et
al., 2015; Zahawi e al.,2015). PIX4D calculates the key points of
individual images and uses them to find matches between different
images.

From these initial matches, the software iteratively performs a number
of steps, including automatic aerial triangulation, packet block
adjustment and camera auto-calibration, until an optimal
reconstmction is achieved (Fernandez-Guisuraga et al., 20 18; Panday
et al., 2020). Next, a densified point cloud is generated to create a
highly detailed Digital Surface Model (DSM) and Digital Terrain
Model (DTM), which will be used to generate the final orthomosaics
and reflectance maps for each site (Figure 7). The reflectance maps
were generated by applying radiometric calibrations and corrections.
Firstly, a radiometric calibration was carried out using calibration
target images that provide an absolute reference of radiometry,
enabling data from several fli ghts to be compared. Next, "Camera and
Sun irradiance" radiometric corrections were applied to correct for
terrain reflectance. In this process, P ix4D mapper uses the ISO values,
aperture, shutter speed, sensor response, optical systemand vignetting
recorded in the textual metadata files (EXIF and XMP tags) for each
photogram, to correct the camera para meters. Next, incoming sunlight
irradiance is ocorrected based on in-formation provided by the solar
irradiance sensor. This sensor provides data on light conditions during
the flight, in the same spectral bands as those captured by the
multispectral sensor, and this information is recorded in the textual
metadata files mentioned above. This "Camera and Sun irradiance"
correction normalizes the images captured during the flight, enabling
comparison of images taken under different illumination conditions.
Pix4D mapper applies this calibration and correction process to each
photo-gram just before generating the final reflectance orthomosaics
for each spectral band (Figure 7).

Site-specific vegetation index extraction and forage biomass
prediction methods: We used Pix4D software to calculate the
normalized diference vegetation index (NDVI) using spectral
reflectance values in the red, green and near-infrared bands. This
enabled us to assess phytomass. ND VI is a commonly used index for
estimating the presence of vegetation in an area( Taule et al., 2012 ;
Candiago et al., 2015; Garba e al., 2015). It is calculated by taking
the ratio between the difference in reflectance in the near-infrared
band and the reflectance in the red band. The index varies fiom -1 to
1, where -1 indicates a total absence of vegetation and 1 indicates an
absolute presence of vegetation (Figure 8). In our study, NDVI was
used to predict herbaceous biomass. It is calculated using the
following formula:

[PIE.-F)
ND VI = (FIE+E)

The prediction of herbaceous phytomass in different pastoral sites was
carried out using the dry hebaceous biomass of the quadrats and the
vegetation index values (Figure 9). The geographical coordinates of
the biomass measured on the ground of each quadrat of'the different
one-hectare plots were superimposed on the calculated vegetation
index maps. Buffer zones were defined around each GPS point to
simulate the quadrat using ArcGIS software. A mask was applied to
each quadrat to extract the mean values ofthe pixels corresponding to
each 1m? quadrat, using Envi 5.3 sofiware. The average vegetation
index value of the pixels contained within this bufer zone was used to
define the quadrats vegetation index value. These values were entered
into an attribute table in the Excel file and used for statistical analysis.
Woody phytomass was determined for the entire study area using a
linear regression model linking field measurements (dendrometric
parameters) and photogrammetric measurements (tree height, crown
area). On each one-hectare drone orthomosaic, we first delimited the
leafarea o ften manually selected trees using ArcGIS software (Figure
10-a). We then used allometric equations to calculate the above-
ground biomass of the ten woody individuals in each one-hectare
plot.These species include Balanites aegyptiaca (Adamou et al,
2020), Guiera senegalensis (Henry e al., 2011),Combretum
mi aranthum(Sawadogo et al., 2010), Combretum nigricans(Sawadogo
etal., 2010),Combretum glutinosum (Mbow et al., 2014), Detarium
microcarpum(Koala, 2016), et Vitellaria paradoxa (Koala, 2016). For
species for which no allometric equations are available (Cassia
sieberiana, Lannea acida, Combretum collinum), we used the
pantropical equations (Brown, 1997).



25092 International Journal of Current Research, Vol. 15, Issue, 06, pp.25088-25099, June, 2023

amoreo anin v i Lo angz0n sz

(i) (I
3360 Bk
=z
6200

i
e

. Legend Legend
[ lumirt [ Jummrr
Image P1 Site 1 |5 g Image P4 sito 2 b g
RGE It RGE
Rad  Bane ) Ast Band_t
- ]
| R I oson Bani_?
B Band 1 g s Hand_ 3 2
H ]
- - 4=
] sadren T
AT dhwide
i . -
. b v
2 2
# :
£ ]
£ i
2 2
i - g
Legand
[ Jumtin Legend
Image P1 site 2 18 E_ T i s E
| image P14 sie 4 it |2
RGE
e B
i B e Ban 2 g
] . B H
Lol ] Ll Ll L] e AT ALEAD

Figure 7. Orthomosaic examples of one-hectare pastoral plots in color composition: NIR (near infrared) + Red + Green; (pixel
resolution: 4.9 cm) for each site (a =site 1; b =site; site3 = ¢; site 4 = d)

§ — & § Z N i
. Al A
|| 8
g - .‘“ % f § 8 5
; @ it %
&
E] - g g 3
H ¢ H 3 i
4 i Legend Legend
g_ . 6 * W v ﬁ:;\':|m1 .'; § i uw?i:;:luuz E
. ' - L.
« o < o 4302001 L [l S— 5
= = E 4
410 d‘ﬂ .]IW 018 "1» gl &3 mg ShEALS L] AR M ARG AT ST *
(a)

. . N %
N g
. A
: H
]
H
5 3
' it
masgrs i 5
| L L Limia 5
l_ﬂ;'l| Plot 1 site 340 NTM Plot 1 site 461 -g

Vs Walue
e e
" i - H

(c) (d)

Figure 8. Drone NDVI vegetationindex of one-hectare pastoral plots at each site (a =site1; b =site 2; site 3 =c; site 4 =d)



25093

Issaka BOUBACAR ALI et al. Assessment of forage production in pastoral rangelands using multispectral drone imagery
data inthe sahelian and sudanian zo nes of the west African sahel

ww  eym e ene  ene  eow  eew e | e i Gl
f Mo Mo ean: (1
5' R ‘ N g sE S
2 Sk A
M : ] 04 E- L
o3 Al T
3 E
8 ] £ E
1 ‘ X i SuE b
: . uE
3 | 3 E
= Legend = =
!4 ' Tres cown e w88 1 -! 3 —l—
- ° j— ’ e
§ | Clowanse b T; il
__"_FO“\" .m
B « » . | NoviPoPrsmes (2
g .'1-,‘ Qe e
Liw 83000 Lemmier B0 Fapar Facaar v
: S N e '3
| P— ; i .y b ey " b Vor e
ware wave et adm P asm o P [k MNP M T W
(a) (b)

(c)

(d)

Figure 10. Orthomosaic of a one-hectare plot at site 1 (a); Digital Terrain Model (DTM) (b); Digital Surface

Model (DSM) and (a) Cano py Height Model (CHM)




25094

International Journal of Current Research, Vol 15, Issue, 06, pp.25088-25099, June, 2023

From the raster outputs (DSM, DTM), total tree height was calcul ated
by subtracting the Digital Surface Model (DSM) from the Digital
Terrain Model (DTM) using ArcGIS sofiware (Figure 10). Finally,
relationships were established between these measurements extracted
from UAV images and direct measurements obtained in the field, in
order to predict woody phytomasse across the entirestudy area.

Statistical data analysis: In this study, Simple Linear Regression
(SLR) was used to predict woody and herbaceous phytomass using R
software and the least-squares method. For the prediction of
herbaceous phytomass, regression models were established by
relating the herbaceous biomass measured in the ground quadrats to
the mean of the ND VI vegetation ind ex values corresponding to each
quadrat. For woody phytomass, relationships were established
between the fo-liar biomass calculated from all ometric equations and
that obtained using dendmometric parameters of trees extracted from
UAYV images.

The performance of each phytomass estimation model was evaluated
using the R? coeflicient of determination. This coeflicient gives a
general indication of model fit. To assess model accuracy, we also
used the root mean square error (RMSE) and the relative root mean
square error (RMSEr). These measures enable us to determine which
model provides the best results. The Akaike Information Criterion
(AIC) was used to compare the performance o f different models. The
AIC has recently been used to compare models in other studies that
have estimated biomass based on remotely sensed data (Gleason &
Im, 2012 ; Phamet al, 2017).
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RESULTS

Analysis of herbaceous biomass

Relationship between grass biomass measurements of ground
quadrat and the NDVI vegetation index corresponding to each
quadrat on the pilot sites: We used simple linear regression to assess
the relationship between quadrat biomass and NDVI (Figures 11).
Analysis of these results reveals that each model has a coeflicient of
determination R? close to 1, indicating a strong and significant
correlation betw een quadrat biomass and NDVI. The pointsin the data
cloud are very close to the regression curve. Statistical precision
(Table 2) confirms the significance of the relationships, with a p-
value<0.0001. The coefficients of determination R? are 0.61, 0.86,
0.79 and 0.59 respectively for sites 1, 2, 3 and 4. Furthermore, these
results show that the highest coeflicient is observed in the Sudanian
zone (site2).

Woo dy biomass analysis
Relationship between photogramm etric measurements (leaf area,

height) and field measurements of total height and crown area of
trees: On al fur study sites, we observed significant correlations
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Table 2. Statis tical models for estimating herbaceous phytomass and their accuracies

Study sites Equation R? R*2 RMSE KgMs/m? RMSEr % AIC P-value
Site 1 y =0,5985x+ 0,005 | 0,61 | 0,60 0,014 22,32 182,51 | 2,191077
Site 2 y =0,4128x +0,0002 | 0,86 | 0,86 0,110 26,11 181,66 | 2,21071°
Site 3 y =0,7241x + 0,0007 | 0,79 | 0,78 0,035 19,86 148,57 | 1,8107*
Site 4 y =0,2619x + 0,0065 | 0,59 | 0,58 0,046 26,84 127,03 | 6,06107°

y: Biomass herbaceous; x: NDVI, R% coeflicient of detemination, R** adjusted coefficient of determination,
AIC: Information criteria of Akaike, RMSE: root mean square error estimation, RMSEr: relative root means

square estimation errors
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Table 3. Statis tical models for estimating woody phytom ass and total tree heightfrom photog rammetric
measurements and their accuracies

Study sites Equation R? R2* RM SE KgMs/n? RMSEr % AIC P-value
Site 1 y = 1,0878x - 3,2364 | 0,58 | 0,57 0,09 39,55 19,19 | 8,77 10 °
Site 2 y =0,6612x- 0,2148 | 0,64 | 0,63 0,53 14,16 68,81 | 4961077
Site 3 y =0,7011x- 0,2771 | 0,65 | 0,64 0,56 14,72 58,51 | 147107
Site 4 y = 0,6371x- 0,130 | 0,69 | 0,68 0,08 19,28 116,62 | 3.9610

y: Leaf biamass x: tree height, R% coefficient of deermination, R?*: adj usted coefficient of deermination, AIC: Information
criteria of Akaike, RMSE: root mean square error estimation, RMSEr: relative root means square e stimation errors

between variables measured in the field (crown area and total tree
height) and those determined from the drone. Comparison of the
crown area measurements assessed in the field with those obtained
from the drone revealed a strong oorrelation, with coeflicients of
determination (R?) between 0.78 and 0.88 and a p-value < 0.0001
(Figure 12). Similady, the comparison of crown area measurements
evaluated in the field with those determined by drone shows a
significant correlation, with R? values ranging from 0.74 to 0.89 and a
p-value < 0.0001. The strongest correlation is observed at site 4
(Figure 13).

Relationship between leaf biomass and total tree height from
photo gramm etric measurements: Analysis of Figure 14 highlights
the relationship between leaf biomass and total tree height obtained
from drone images. The trend line for biomass as a function ofheight
reveals R? coeflicients varying between 0.58 and 0.69. These R?
values demonstrate a very strong correlation between leafbiomass and
total height measured by photogrammetry. Statistical precision (Table
3) indicates that these relationships are significant for all sites.

DISCUSSION

Estimating herbaceous and woody biomass is an essential step in
assessing arid and semi-arid ecosystems (Bossoukpe et al., 2021;
Nungi-Pambu, 2022; Taugourdeau et al., 2022).

In this study, we demonstrated that the use of low-cost multisp ectral
UAVs enables efficient estimation of herbaceous and woody biomass.
The production of the biomass map is based on a linear regression
equation between the mean value of the NDVI (Normalized
Difference Vegetation Index) of each 1m? quadrat and parameters
derived fiom dendrometric measurements. Drone outputs explain
between 61% and 86% of the variance for herbaceous biomass and
between 58% and 69% for woody biomass. The ND VI vegetation
index is strongly related to herbaceous biomass. Mean prediction
errors (RMSE) ranged from 0.013 kgMs/m? to 0.110 kgMs/n?, with
relative errors of 19 86% to 26 84 % for dry mass. The greatest error
was observed at site 4 in the Sudanian zone. Numerous studies have
confirmed the use of drones for biomass assessment (Surovy et al.,
2018; Taugourdeau et al., 2022; Wijesingha ef al., 2020).

Our results are consistent with the literature, where other authors have
obtained similar regression coefficients between vegetation index and
biomass measured on the ground(Cados A. et al.,2019; Liu et al,
2019; Taule et al.,2012),Some researchers have used color indices to
estimate herbaceous biomass (Bendig et al.,2014; Lussem et al.,
2018; Possoch et al., 2016). A similar study by other researchers used
an unmanned aerial vehicle (UAV) and a ground-based digital camera,
combined with above-ground herbaceous biomass measurements, to
estimate herbaceous biomass with mean estimation errors of around
150 g/m? for fresh mass (relative error of 20%) and 60 g/m? for dry
mass (error of around 25%) and a coeflicient of determination R?
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equal to 0.60(Taugourdeau et al., 2022). In our study, some errors in
predicting herbaceous biomass could also be attributed to manual
measurements ofherbaceous vegetation (destmctive sampling) and to
the simulation of GPS points in the quadrats. The use of ground
markers could reduce these errors and enable more accurate location
ofthe 1 n? quadrats (Bossoukpe et al., 2021).The results ofthe drone
assessment of woody trees enabled us to distinguish variations of
between 74% and 89% in individual measurements of total height
obtained from one site to another compared with field measurements.
These results are in line with those obtained by other researchers in
Senegal (Bossoukpe, 2021 ; Sarron, 2019),where 85% of the heights
obtained by drone imagery were equal to those measured in the field.
Similar results were also observed by researchers in Burkina Faso
(Konatéer al., 2022),where 91% of the height in the field
corresponded to that obtained from drone images. However, in our
study, the highest correlation (R? = 0.89) was observed at the
Oroubeidou site in Benin, due to the relative size of the species
inventoried. In fact, the position of certain trees may overestimate the
height estimated by photogrammetry, as the drone cannot see beneath
the trees. In addition, the large sample size may also lead to
measurement errors in the field. Our results are similar to those
obtained by researchers in Spain(Zarco-Tejada et al., 2014 )who used
a fixed-wing drone to estimate tree heights over a 158-hectare forest
area. The method used was automatic 3D reconstmction, generating
an orthomosaic and digital surface models of the study area.
Photog rammetric crown area measurements were also 80 % correlated
with field measurements. Our results are similar to those obtained by
other researchers (Bossoukpe et al.,2021; Konaté ef al.,2022; Lisein,
2016; Tu et al.,2019), who used photogrammetry to estimate the
surface area of a tree's crown. The results of woody biomass
prediction, based on dendrometric parameters and drone
measurements (height, NDVI), showed that woody biomass was
related to area and height variables, and not to NDVI vegetation
indices. The explanatory variables (R?) varied from 0.58 to 0.69
between the height estimated by the drone and woody biomass. These
results confirm those obtained by other researchers (Panday e al,
2020) and (Bossoukpe et al, 2021)who found that 41% of the
variability in woody phytomass was not explained by any drone
output. However, the inaccuracy of our assessment could be due to
our method of calculating woody phytomass. We used allometric
equations based on trunk diameter and average crown area. In
addition, we used pantropical equations for certain species for which
specific equations were not available(Brown, 1997). Another source
of inaccuracy could be the flight altitude, as we flew at 90 meters.
Differentiating the flight altitude could enable us to obtain more
precise heights than those obtained at 90 meters, and improve the
accuracy ofthe woody biomass estimate.

CONCLUSION

This study demonstrates the feasibility of using a low-cost
multispectral drone to estimate herbaceous and woody biomass in the
Sahelo-Sudanian and Sudanian zones. The results show that model
parameters vary from site to site, as evidenced by the R? values. R?
regression coefficients ranged from 0.59 to 086 for herbaceous
biomass, and from0.58 to 0.69 for woody biomass. It is important to
note that despite these variations, the correlations remain significant
(P <0.0001) for all sites. Furthermore, the analyses reveal that the
highest coeflicient of determination is observed in the Sudanian zone,
for both herbaceous and woody biomass. Root-mean-square errors
(RMSE) and relative root-mean-square errors (RMSEr) also vary
from site to site. They range firom 0.013 kgMs/m? to 0.110 kgMs/m?
(relative errors ofaround 19.86% to 26.84%) for herbaceous biomass,
and from 0.53 kgMs/m? to 0.99 kgMs/m? (relative errors of around
14.16% to 39.55%) for woody biomass. The multispectral drone can
be used as an intermediary tool between field measurements and the
satellite images generally used for vegetation monitoring. Its use
reduces the field sampling effort usually required to monitor
vegetation in these pastoral areas. What's more, the multispectral
drone makes it possible to bypass the dismuption caused by clouds on
satellite images during certain periods ofthe year.
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