SYNTHESIS OF TRIAZOLES: AN OVERVIEW

*Nitin Arunrao Aswar

Department of Chemical Technology, SGB Amravati University, Amravati

INTRODUCTION

Heterocyclic chemistry has now become a separate field of chemistry with long history, present society and future prospects. The earliest compounds known to mankind were of heterocyclic origin. Life, like ours, is totally dependent on the heterocyclic compounds, it takes birth with purine/pyrimidine bases, nourishes on carbohydrates and in case of disease, is cured from medicines, many of which are heterocyclic in nature. Today, the heterocyclic chemistry delivers reagents and synthetic methods of its own traditional activity in synthesis of drugs, pesticides and detergents as well as into the related fields such as biochemistry, polymers and material sciences.

The name triazole was first given to the carbon nitrogen ring system C_2N_3H_7 by Bladin who described its derivatives in early 1885, although the structures reported slightly incorrect. An alternative name, pyrroldiazole was given by Andreocci in 1889 regarding it as a member of a class of compounds analogous to pyrrole. A little interest emerged in this field from about 1925 to 1946. The successors of Andreocci carried out most intensive investigations of the chemistry of 1,2,4-triazoles. The chemical industry got renewed attention in the synthesis of both simple and fused triazole systems after the discovery that certain triazoles capable of inhibiting fog formation in photographic emulsions and some others being useful herbicides and convulsants. All triazoles are of synthetic origin and there is no triazole ring system detected as yet in nature.

1,2,4-Triazole is one of a pair of isomeric chemical compounds with molecular formula C_2H_3N_3, called triazoles, which have a five-membered ring of two carbon atoms and three nitrogen atoms. 1,2,4-Triazole is a basic aromatic heterocycle. 1,2,4-Triazole derivatives find use in a wide variety of applications, most notably as antifungals such as fluconazole and itraconazole. 1,2,4-Triazoles can be prepared using the Einhorn–Brunner reaction or the Pellizzari reaction (Potts 1961).

The two isomers are

![Triazole structures]

Triazoles are the class of heterocyclic compounds, which are under study since many a years. Its diversity in showing the pharmacological activities is mind blowinglly identified well by the medicinal chemists. Triazole, with many a compounds as incorporating with other heterocyclic nucleus, hydrazides, substituted triazoles are some of great uses which fascinates the chemists to continue research on it and find out more hidden potentials of this nucleus. The azide alkyne Huisgen cycloaddition is a mild and selective reaction that gives 1,2,3-triazoles as products. The reaction has been widely used in bioorthogonal chemistry and in organic synthesis. Triazoles are relatively stable functional groups and triazole linkages can be used in a variety of applications (for example, replacing the phosphate backbone of DNA.)
Modern Synthetic Pathways of Triazoles

The synthesis of 1-monosubstituted aryl 1,2,3-triazoles was achieved in good yields using calcium carbide as a source of acetylene. The copper-catalyzed 1,3-dipolar cycloaddition reactions were carried out without nitrogen protection and in a MeCN-H2O mixture (Jiang, et al., 2009).

\[
\begin{align*}
\text{Ar-N} & \equiv \text{N} + \text{Cu} \rightarrow \text{Ar-N} \equiv \text{N} \\
\text{Ar-N}_3 & \equiv \text{N} + \text{CaC}_2 \\
& \text{MeCN / H}_2\text{O (2:1)} \\
& \text{r.t., 2 - 20 h}
\end{align*}
\]

A Pd-catalyzed synthesis of 1H-triazoles from alkenyl halides and sodium azide represents a completely new reactivity pattern in the context of Pd chemistry. (Barluenga, et al., 2006).

\[
\begin{align*}
\text{Ar} & \equiv \text{N}_3 + 3 \text{eq. NaN}_3 \\
& \text{dioxane, 90°C, 14 h}
\end{align*}
\]

A tandem catalysis protocol based on decarboxylative coupling of alkyenic acids and 1,3-dipolar cycloaddition of azides avoids usage of gaseous or highly volatile terminal alkynes, reduces handling of potentially unstable and explosive azides to a minimum, and furnishes various functionalized 1,2,3-triazoles in excellent yields and a very good purity without the need for additional purification. (Kolarovic, et al., 2011).

\[
\begin{align*}
\text{R} & \equiv \text{N}_3 + 3 \text{eq. NaN}_3 \\
& \text{DMF, 110°C, 20 - 24 h}
\end{align*}
\]

Self-assembly of copper sulfate and a poly (imidazole-acrylamide) amphiphile provides a highly active, reusable, globular, solid-phase catalyst for click chemistry. The insoluble amphiphilic polymeric imidazole Cu catalyst drove the cycloaddition of various azides and organic azides at very low catalyst loadings and can be readily reused without loss of activity to give the corresponding triazoles quantitatively (Yamada, et al., 2012).

\[
\begin{align*}
\text{R} & \equiv \text{N}_3 + 3 \text{eq. NaN}_3 \\
& \text{DMF, r.t., 24 h}
\end{align*}
\]

4-Aryl-1H-1,2,3-triazoles were synthesized from anti-3-aryl-2,3-dibromopropionic acids and sodium azide by a one-pot method using N,N-dimethylformamide as solvent in the presence of Pd2(dba)3 and Xantphos (Zhang et al., 2010).

\[
\begin{align*}
\text{Ar} & \equiv \text{N}_3 + 1.6 \text{eq. Cu} \equiv \text{N}_3 \\
& \text{DMSO, 110°C, 4 h}
\end{align*}
\]

A true Click catalytic system is based on commercially available [CuBr/Ph3P]. This system is active at room temperature, with catalyst loadings of 0.5 mol % or less, in the absence of any additive, and it does not require any purification step to isolate pure triazoles (Lal and Díez-González, 2011).

\[
\begin{align*}
\text{R} & \equiv \text{N}_3 + 0.1 \text{eq. Cu} \equiv \text{N}_3 \\
& \text{DMF, r.t., 24 h}
\end{align*}
\]

Acid-Base Jointly Promoted Copper (I)-Catalyzed Azide-Alkyne Cycloaddition (Shao et al., 2011).

\[
\begin{align*}
\text{R} & \equiv \text{N}_3 + 2 \text{eq. NaN}_3 \\
& \text{CHCl}_3, \text{arrested}, 1.2 - 1.35 \text{h}
\end{align*}
\]

A well-defined copper(I) isonitrile complex is an efficient, heterogeneous catalyst for azide-alkyne 1,3-dipolar cycloadditions and three-component reactions of halides, sodium azide and alkenes to form 1,4-disubstituted 1,2,3-triazoles in high yields under mild conditions in water. The complex can be recycled for at least five runs without significant loss of activity by simple precipitation and filtration (Liu and Reiser, 2011).

\[
\begin{align*}
\text{R} & \equiv \text{N}_3 + 2 \text{eq. NaN}_3 \\
& \text{H}_2\text{O, r.t., 2 - 3 h}
\end{align*}
\]

Cycloadditions of copper(I) acetylides to azides and nitrile oxides provide ready access to 1,4-disubstituted 1,2,3-triazoles and 3,4-disubstituted isoxazoles, respectively. The process is highly reliable and exhibits an unusually wide scope with respect to both components. Computational studies revealed a
nonconcerted mechanism involving unprecedented metallacycle intermediates (Himo et al., 2005)

\[
\text{R-N}_3 + \text{R}'' \rightarrow \text{Ar-N}_3 + \text{TMS} + \text{Ar}'
\]

DMSO, rt, 1-24 h

In the presence of a catalytic amount of tetraalkylammonium hydroxide or t-BuOK for base-labile substrates. The reaction is experimentally simple, does not require a transition-metal catalyst, and is not sensitive to atmospheric oxygen and moisture (Kwok et al., 2010).

A method for the regiospecific synthesis of 1,4,5-trisubstituted 1,2,3-triazole catalyzed by copper(I) iodide was developed. This is the first example of a regiospecific synthesis of 5-iodo-1,4-disubstituted-1,2,3-triazole, which can be further elaborated to a range of 1,4,5-trisubstituted-1,2,3-triazole derivatives (Wu et al., 2005).

RN₃ + R'' + 1 eq. CuCl, 1 eq. ICl, 1.2 eq. NEt₃

THF, rt, 20 h

Inexpensive copper catalysts enabled modular one-pot multicomponent syntheses of fully decorated triazoles through a sustainable “click” reaction/direct arylation sequence (Ackermann et al., 2008).

Microwave irradiation significantly enhances the rate of formation of 1,4-disubstituted 1,2,3-triazoles from alkynes and in situ generated azides. Azides are derived from an efficient one-pot azidation of anilines with the reagent combination t-BuONO and TMSN₃ (Moorhouse and Moses 2008).

A reliable and operationally simple one-pot reaction for a one-carbon homologation of various aldehydes followed by Cu-catalyzed azide-alkyne click chemistry gives 1,4-disubstituted 1,2,3-triazoles in good yields without the need for isolation of the alkyne intermediates (Luvino et al., 2007).

1,2,3-Triazoles were prepared in good to modest yields by cycloaddition of alkyl azides onto enol ethers under solventless conditions. The reaction can access ring-fused triazoles that are unavailable by azide-alkyne cycloadditions and is easily scalable. The 1,2,3-triazole products bear functionality that may be readily derivatized (Rogue et al., 2005).
Triazoles have been synthesized via a three-component coupling reaction of unactivated terminal alkynes, allyl carbonate, and trimethylsilyl azide under Pd(0)-Cu(I) bimetallic catalysis. The deallylation of the resulting allyltriazoles is described (Kamijo et al., 2003).

\[
\text{R-} + \text{MeO} + \text{CO} + \text{N}_3 \rightarrow \text{R-} + \text{MeO} + \text{CO} + \text{N}_3 \text{H}
\]

Reactions of 4-bromo-NH-1,2,3-triazoles with alkyl halides in the presence of K2CO3 in DMF produced the corresponding 2-substituted 4-bromo-1,2,3-triazoles in a regioselective process. Subsequent Suzuki cross-coupling reaction provided an efficient synthesis of 2,4,5-trisubstituted triazoles, whereas hydrogenation furnished an efficient synthesis of 2,4-disubstituted triazoles (Wang et al., 2009).

A palladium-catalyzed and ultrasonic promoted Sonogashira coupling/1,3-dipolar cycloaddition of acid chlorides, terminal acetylenes, and sodium azide in one pot enables an efficient synthesis of 4,5-disubstituted-1,2,3-(NH)-triazoles in excellent yields (Li et al., 2009).

TBAC-catalyzed [3 + 2] cycloadditions of 2-aryl-1-cyano- or 2-ary1-1-carbethoxy-1-nitroethenes with TMSN3 under solvent free conditions allow the preparation of 4-aryl-5-cyano- or 4-aryl-5-carbethoxy-1H,1,2,3-triazoles under mild reaction conditions with good to excellent yields (Amanatini et al., 2005).

\[
\text{Ar} + \text{HNO}_2 \rightarrow \text{Ar} + \text{HNO}_2
\]

Conclusion

The review summarizes with a gist that there is a strong need to synthesize various Triazoles using a household microwave oven and without the use of organic solvents, catalysts or extended heating. This will give out to emphasize the importance of Green Chemistry and also provide a fast & efficient technique to obtain the desired triazoles which gives a superior alternative to the classical synthesis without the use of poisonous and environmentally dangerous reagents.

Acknowledgement

The author deeply acknowledges the valuable and necessary support from Dr. R.S. Sapkal, Head of Department & Dr. A.B.Naik, Assistant Professor, Department of Chemical Technology, SGB Amravati University, Amravati.

REFERENCES

Chen X., Y. Yang, C. Kuang, Q. Yang, Synthesis, 2011, 2907-2912

Jiang Y., C. Kuang, Q. Yang, Synlett, 2009, 3163-3166

Acknowledgement

The author deeply acknowledges the valuable and necessary support from Dr. R.S. Sapkal, Head of Department & Dr. A.B.Naik, Assistant Professor, Department of Chemical Technology, SGB Amravati University, Amravati.

REFERENCES

Chen X., Y. Yang, C. Kuang, Q. Yang, Synthesis, 2011, 2907-2912
Jiang Y., C. Kuang, Q. Yang, Synlett, 2009, 3163-3166
Jiang Y., C. Kuang, Q. Yang, Synthesis, 2010, 4256-4260
Kwok S. W., J. R. Fotsing, R. J. Fraser, V. O. Rodinov, V. V. Fokin, Org. Lett., 2010, 12, 4217-4219

Luvino D., C. Amalric, M. Smietana, J.-J. Vasseur, Synlett, 2007, 3037-3041
Moorhouse A. D., J. E. Moses, Synlett, 2008, 2089-2092

Conclusion

The review summarizes with a gist that there is a strong need to synthesize various Triazoles using a household microwave oven and without the use of organic solvents, catalysts or extended heating. This will give out to emphasize the importance of Green Chemistry and also provide a fast & efficient technique to obtain the desired triazoles which gives a superior alternative to the classical synthesis without the use of poisonous and environmentally dangerous reagents.