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equations in general relativity for extended charged distribution will prove useful in the study of
quantum field theory in a Reimannin manifold as question of self-energy becomes answerable. Sphere
of charged dust have been investigated by Papapetrou (23). Bonner and Wickramasuriya (5) and
Raychaudhuri (24). It is believed that exact solutions of the field equations in general relativity for
extended charged distribution will prove useful in the study of quantum field theory in a Reimannin
manifold as question of self-energy becomes answerable. Sphere of charged dust have been
investigated by Papapetrou (23). Bonner and Wickramasuriya (5) and Raychaudhuri (24). It is
known that the pressure less charged distribution in equilibrium will have the absolute value of the
charge to mass ratio as unity in relativistic units (De and Raychaudhuri (9)). Firstly, the solution does
not reduce to the interior Schwarzschild solutions when tensor charge density equals zero. This is not
surprising as the vanishing of o, does not mean the absence of charge but only implies that the total
charge in the sphere is zero. Secondly the gravitational self-energy contribution to the total
gravitational mass inversely as the radius of the sphere and not inversely as the square of radius. It
can be Mentioned that if one attempts to generalize Kyle and Martin assumption of taking
eMo(r) oc ™ m> 0. Q(r) o r™+3,

The solution of Wilson can always be overlooked. Hereo(r) is the proper charge density within the
sphere A is metric potential and Q(r) represent the total charge contained within the sphere of radius r.
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INTRODUCTION

A conformally flat spherically symmetric non-static internal solution was obtained by Singh and Abdussattar(21). Letter on Ray
and Raj bali (19) found a general solution representing conformally flat perfect fluid distribution of spherical symmetry. They
have also discussed various physical properties of the model. Gurses (12) has shown that the only static distribution of the fluid
with positive density and pressure which would generate a conformally flate metric through the Einstein’s equations without
cosmological term is that described by the Schwarzschild interior solution. Burman (4) discussed the motion of the particles in
conformally flate space-time. Singh and Abdussattar (21) has obtained a non-static generalization of the Schwarzschild interior
solution which is conformal to flate space-time. They have also shown that the model admits of distribution of discrete particles
and disorder variation. Zalcev (24) and Shikin (20) have obtained conformally flate non-static solution in general relativity theory
and scalar tensor-theories of gravitation. Collinson (8) has shown that every conform ally flat ax symmetric stationary space-time
is static, he has also Proved that if the source is perfect fluid the space-time is the interior Schwarzschild field. The Einstein-
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Maxwell field equations in the presence of matter and charge from a highly non-liner system of equations and so a small number
of exact solution have been obtained. It is believed that exact solutions of the field equations in general relativity for extended
charged distribution will prove useful in the study of quantum field theory in a Reimannin manifold as question of self-energy
becomes answerable. Sphere of charged dust have been investigated by Papapetrou (23). Bonner and Wickramasuriya (5) and
Raychaudhuri (24). It is known that the pressure less charged distribution in equilibrium will have the absolute value of the charge
to mass ratio as unity in relativistic units (De and Raychaudhuri (9)). Firstly, the solution does not reduce to the interior
Schwarzschild solutions when tensor charge density equals zero. This is not surprising as the vanishing of 6, does not mean the
absence of charge but only implies that the total charge in the sphere is zero. Secondly the gravitational self-energy contribution to
the total gravitational mass inversely as the radius of the sphere and not inversely as the square of radius. It can be

Mentioned that if one attempts to generalize Kyle and Martin assumption of taking
e??o(r) o r'™ m> 0.
Q(r) ecr™*3,

The solution of Wilson can always be overlooked. Hereo(r) is the proper charge density within the sphere A is metric potential and

Q(r) represent the total charge contained within the sphere of radius r.

Q(r) =4 mf, x? eMo(x)dx
For a spherically symmetric charge distribution the unique exterior metric was obtained by Reissner (25) and Nordstorm (21).
THE FIELD EQUATIONS
We use here the static spherically symmetric line element in the form
ds’= e’dt* —¢" dr* —r*(d8*+sin’0dp?) (1)

Wherea and Bare function of r only. The Einstein-Maxwell equation for the charged perfect fluid distribution in general relativity
is

Rj-1/2Rg;; = -8T;; 2
((0) "F)=I(-8)" (3)
Fij10=0 4)

Where Tjjis the energy momentum tensor, Jiis the current four vector, Rj; is the Ricci tensor and R the curvature scalar. For the
system under study the energy momentum tensor Tij splits up into two parts viz. Mij and Eij for matter and charges respectively i.e.
M= ((p+P)u'y; -p&;) (5

With
u'u=1(6)

The non-vanishing components of M}, are
M = Mj=M3=-p, Mi =p

Thus the Einstein-Maxwell field equation are

—x,1 ary 1

e (5 + ) = -8mp-E’ (6)
1 _q, 1 By 1

=€ “(r—z+67)-r—z=-8ﬂp-E2 (7
—ocl ’ l_l /2_1 n_i B’—OU — R2
e (B —1p7 —1p"— 1) = gnp-E ®)
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Where p is the interior pressure and p is the pure gravitational mass density. To solve (5), we get

QZ
p=20 ©)

Where Q(r) represents the total charge contained within the sphere of radius r, we have

Q(r) = 4m [ p, r’dr (10)
Where p. is the charge density.

3.3 SOLUTION OF THE FIELD EQUATIONS

We have five equation (1) — (4) and (6) in six variables «, 8, Q(r), Ej, p and p. Hence the system is indeterminate. To make the

system determinate we require one more relation. For this we choose uniform mass density in the form
p = A+Br%, (B<0) (11)
Where A and B are constant. Now integrating equation (6) we get
e "= 1+nr*+&(r) (12)
Where ) is integration constant andg(r) is
gr)=2r’f %dr (13)
From (11), (12) and (13) we get
g/r+g/r’ = -8m(A+Br’) -E*-3n (14)

Now differentiating (4) we get

2 2
T 2s= —Br (15)

Solution of (5) we get

_A+Db?r?

E’= > (16)

Q’(r) =Ar+b’r’(17)
Where A is the integration constant and
Bzz%‘“B,(B<O) (18)
Case 1: when A#0
Using (16) into ( 13) we find

&(r) = -A+b*r (19)
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From (19) and (12) we get
e = 1-A+b’r* +nr’ (20)
Inserting (20) and (12) into (12) we can prove
TS A= b
Where R? is different from RZwhich is dependent on the pure gravitational mass density p; so that
e ¥ = C-1 bt (22)

Where C=1-A

Using equation (16) and (22) into p eliminate of (21) and (22) we get

. o +2b%r3 _ 2,4
B +£B’2 _ (1 _r >’ B _ 2(c—1)+2b“r (23)

2 2
2 2 I p2p4 2( L2 1p2p2
c RZ+b r r (c RZ+b r)

By use of transformation

=y (24)
And
X 2P =7 (25

Equation (3.3.12) is transformed to

ﬁ+ —11(—1_2b2R2X )E

dx? 2 \cRZ—x+b2R2x2/ dx
2(c-1)R?

4x2(cR2—x+b2R2x2)2

(26)

Again using the transformation

/
D 1 [(C_R_Xﬁbzxz)l i _ 1R

b <
U - i 27)

Where D is constant, equation (3.3.15) is changed into

>d?z (2c-1)R?
du? 4

7=0 Q7

The final solution of equation (3.3.12) may be written as

z 1/2 z
1 1 1/2 C—ﬁ+h2r4 1
} + k,cosh {E (2 - E) In I(Rzr—2> + r%ZWB> (28)

. ]
/2 e +b?rt\ 2
B =2 inh)i(2—1)' R c__1
e r <k151nh{2 (2 C) In = t e W=

where k; and k; are the integration constant. Now using equation (28) and (7) the pressure p is given by

8np :4b2r2-% + % — (r% + % + rzbz) B’ 29)

2
8mp ;i; - %+4b2r2—(c - % + r2b4)
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r2 c
=Y 2[%‘%‘
lrz(l—;—2+b2r4’> |
X r2 24 r2
(cz—ﬁ+b r >+C_2W
1 1 /2 C 1
k1+k2tanh{3 Z_E [ C——-l—b2 4) +l"_2__3:|}
2V cR
( [ 1/2 'l\ (30)
! 1 1/2 |<C_R_+b2r4> c 1 IL
k;+Kk;tanh | 3 Z_E l 2 t iz, chil
{ J
Case II. Uniform charge density sphere
When A =0 then from (3.7)
Q*(r) =b™r° (€2))

This is the case of uniform charge density distribution or the case of uniform charge density sphere with the surface of charge

spherical thin shell. From (9), we find

b2 = 1612 5

4
5 Pe (p.=constant) Or b= (?n)pc 32)

Then from (3.3.1) we have

p=A - 2b* (32)

4T

Where A is the total mass density and the (—=)b’ is the electromagnetic self-density. Equation (3.3.23) implies that the pure
y 4T

gravitational mass density A is inhomogeneous but the total mass density A is homogeneous. Also we have from (3.3.11).
-0 _ r? 2p4 2
e 71-5 + bR (32)

In this case eq".(3.3.18) can be transformed and gives

1

oA (ST D RERE

2_1.24.2 2 2 1/2 217t
OO (k) ol (12 ) - 9
Also pressure is given by
8np:4b2r2-% r32—(ri2——+br)[3 (34)
Case III: when B=0(or b? = 0)
Then from (3.3.6) and (3.3.7) we get
E’= % and Q*(r) =Ar’ (35)

Also

p=A (36)
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Hence this is the case of uniform mass density

Using (35), (12) & (13) we get

— 2
¢ =1-A+tnr’=c-— (37)
RO

Where c= 1-A and % = 8%‘) is the Schwarzeild radius. Using equation
0

(35), (37) into p eliminate of (21) and (22) we get

r
2_eR2
r<—eRg

l2 —_
Py R (38)

0 r2(r2—eR2)

After suitable substitution and transformations the final solutions of (3.3.30) is (for ’> R2)

1 1727)°
- 2 sin | L —1(i_ )2 kS —1(i_ )
e'=r {clsln [JE tan R 1) |+ cycos \/Etan RZ 1 39)
Where c; and c, are integration constant. Also pressure is given by

-1/2

X 5 1/2
cl—cztan[ﬁtanﬂ(—z—l) ]
cRo
X — (40)
cltan<?tan_1<;T%—1> >+c2
For r’< cR3, the final solution of (38) is
1/2 2 \1/27y2
B— 2l it [Liann-1(1 — 2 Lep-1(q 12
o r {clsmh [\/Etanh (1 CR%) ]+c2cosh [\/Etanh (1 CR%) ]} . 41
And also
g :E_i_i(i_L>(1_i)_l/2
TR TR TR R}
| 1 2 1/2
Cl+cztanh[\/—ztan; (1—;) ]
7 (42)

/2
1 - 2
cytanh( —=tany -5 +co
Ve CR%

If A # 0 and c# 0(35) and (42) are not regular, they will diverge, we cannot get a physically reasonable solution for charged
percent fluid with constant mass density. The constant appearing in the Rocessner-Nondsrom metric outside the boundary.

THE FIELD EQUATION
We consider the line element in the form
ds’=e"dt*-e*dr’-r*(d0*+sin*0d¢”) (43)

Where A and v are function of r only. The Einstein-Maxwell field equation for the charged perfect fluid distribution in general
relativity are (Adler(1))

Ruﬁ - %Rguﬁ = -gﬁTuﬁ (44)

F;"’B =471)" = 4nou* (45)

Flapy) =0 (46)
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Where T, is the energy momentum tensor, J* is the charged current four vector, R is the Ricci tensor and R the scalar of curative
tensor.

For the system under study the energy momentum tensor Tgsplits up into two parts viz. Tg And Eg respectivly.

Tj =T +Ef (47)
Where

Tp = [(p + P)u®up — p8Y] (48)
With

u*u,=1 (49)

The non-vanishing component of Tf are
T% = T; = ng -p and Ti =p (50)

Here p is internal pressure, p and care densities of matter and charges respectively, u® is the velocity vector of the matter.
The static condition is given by

1 2
u =u

u’=0and ud = (g) 5 (51)

-V

ie. u'=ez

The electromagnetic energy momentum tensor Egis given by

Eg= - Fyy F* 42 85F),F" (52)
We assumed the field to be purely electronic i.e. F,, =0 and F4, =¢ vy = ¢A where ¢ is the electrostatic potential.

Thus the Einstein-Maxwell field equation are reduces into the form

eH(5-%)-5=-8mp-E (53)

1 af 1 v\

5= (z-7)= 8w +E &9

Aflom’ Lo Loy Lv=ry]_ 3

e [ka -V SV 2( - )] 8np—E (55)
Where
E =-F"F, (56)
And

41 ! / v

(I 4 2 ) &

By the use of equation (53) — (55), we get the expression
For p,p and E as

e[ 3v v" AV V'2 Iy 1 1
87‘Cp2<—+?—7+7——+r—2>—§ (58)

' "y 2 '
8np—e”<%+v——k—v+V—+1—i>+L (59)
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ry 2 ' '
215—e—X<V——X—V+V——1—l—i2)+i2 (60)
The exterior metric is taken as usual Reissner-Nordstrom line element given by
2_ 2M | Qf\ ;.2 2M | QF\ ;2 202,02 2
ds’= (1= 2+ 2) (1 - 22+ L) dr - (d6*+sin0d?) ... (61)

Where Q, = Q (r;) and M is the total mass of the sphere. The total mass, as measured by an external observer, inside the fluid

sphere of radius ry is given by

M = 4nf,° p(r).r’dr(62)

SOLUTION OF THE FEILD EQUATIONS: We have three equation (4.2.16)-(4.2.18) in five variables (i, p, E, A, v) and thus
the system is indeterminate. In order to make the system determinate, we require two more equation or relation. For this we choose
A and v as two free fluid variables as

A Lt +Mr2+N

(4.3.1) T (63)
_ AN,
o - A, (64
where A,B,C,L,M,N are arbitaray constant  Use of equation (63), (64) in (57), (58)-(60) yields
|60 4N [72A2r5+108ACr5+48NAr2+5C2+6NCr _ 24N(L—1) (4ArS+3Cr3 +2Nr2) 1 ] 1 (65)
PN 4(Ar+CrN)’ N (LA M2 N) (At +CraN) 2] 27
4N 2N(L—1)(12Ar*+11Cr+10N) 4A2 O +6ACT +3CH2 +2NCr 1] 1
16mp Lit+M2+N | (¢ 4N) (L4 + M2 4+N) (A4 4+ Cr+N) + 4(AP+CraN)’ 2 + 2 (66)
4N 4ATOH6ACH +3C224+2NCr 4rN(L—1) (A0 +CB+2Ar3 +Cr) 1 1
2E 2 — -3tz (67)
Li*+Mr2+N 2(AF+Cr+N) @ +N) L+ M2 +N) (A +Cr+N) - 12 2r
4 (NL-MRZ-N)+4r9M+2NMD) 43 a4e )
_|oF 204 *+N) (L4 +Mr24+N) TARHCHN g (Ar4+Cr+N)5
4no P F" + 5 JFU X T (68)
Now using the boundary condition at r = r, the constant appearing in the solution are found to be
4 v 2
_tN M, &
L+ Mg +N ! 10 + I (69)
A +Cro+N M Q (70)
4B - o)) I’%
4A+C _ M QG
88 2 0 (71)
Now we consider the following different cases:
Case: 1 when M =0 then we have
A Li*+N
¢TI (72)
4
eV = Ar"+Cr+N (73)

4B
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Using equation (4.3.10) - (4.3.11) in (57), (58)- (60) we get

167 N [72A2r"+108ACr5+48NAr2+5c2r2+6NCr _ 2N(@L-D@EASH3Ce NG 1 ] b (74)
PN 4(Ar*+CriN)’ N (LAN) (A +Cr+N) 2] 22T
44N 2r6N(L—1)(12Ar411Cr+10N)] [4A2r6+6ACr5+3C2r2+2NCr 1] 1
16mp Lt +N [(r4+N)(Lr4+N)(Ar4+Cr+N) + 4(Ar4+Cr+N)2 12 + 22 (75)
’F = 4N [4A2r6+6ACr5+3C2r2+2NCr _afNL-D@d+er2as+e?) 1 ] n 1 (76)
L +N 2(Ar+CrN)’ N (LA +N) (A +CrN) 2| oo
45N(L-1) | 4rdA+c 1
A AN AP HCr 4 3
dmo =[50+ 2t 4 L) AEEEE it o (REEEEYH (77)
ar r 2 4B
Now using the boundary condition at r =rywe have
4 v 2
otN _ . 2M Q)
Lr3+N =1 o)) + r% (78)
Afg+Cro+N M Q (79)
4B - o)) I’%
JAR+C _ M + Q (80)
88
Case-II when C =0, then we have
o Lt+Mr2+N
T TN S
—4
ef= Ar4—B+N (81-a) and the spin density K is given by Using equation (81) and (81-a) in equation (57), (58)-(60) we get
N 6Ar2(3Ar° +2N) 4N(L-1) A +N) 1] 1
16mp L14+Mr4+N[ (Ar*+N) N (LAMZAN) (A +N) 12 2 (82)
N 4rN(L—1)(6Ar*+5N) ] [ A6 1] 1
16mp L4+ M2 4N [(r4+N)(Lr4+Mr2+N)(Ar4+N) (art+nN)” 2] 2 (83)
2F = AN [2Ar2r3 3 4ARN(L-1) (212 +1) _i] 1 (84)
LeA+Me2Z4+N [(Af4+N) (4N (L M2 4N) (Ard+N) 2] T 22
43 (NL=Me2-N)42Mr e 4+8) 43 .
A4 A2 N 4 35
dno =| % 4 2pH 4 COLEE) AR o (AR (85)
dar r 2 4B
Now applying the boundary conditions at r =r, we have
4 v 2
rp+N _ M  Q
(LeH+MZ+N) ! 10 + ] (86)
AN oM Qf
w Tt (87)
A _ M Q5
2B r% + r(3) ’ (88)

Also the constant & is

Case-III: M=0, C=0 then we have
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o Li*+N

4N 4 (89)
ef= A;}:N; (89-a)and the spin density K is
Using equation (89) - (89-a) in equation (57), (58)-(60) we get
4N [18A%04+12NAE 4rN(L-1) (2AS+Nr2) 1] 1
16mp = LN [ (adtn)? N (LAN)(Ar4N) | 2] 2P ©0)
_ 4N [40ON@L-1) (A0 +5N%) AN 1 ]
16mp Li*+N [r(r4+N)(Lr4+N)(Ar4+N) (A14+N)2 2 ©on
N [ 24k 4N(L-1) (A0 +2A1%) 1] 1
2E= N I:(AI‘4+N)2 TN LAN)ARN) 2 T2 ©2)
43(N(L-1D) | 43A 1
_[oF | 2041 | cto@eten) AN gy AN\ 2
amo=|5-+ 2F" + : F X (22R) (93)
Now applying the boundary conditions at r =r, we have
4 v 2
N M %
CETES Bl (94)
AN oM, Qf
w T te (95)
A _ M Q5
B o2 Ta (96)

CONCLUSION

The solution of Einstein-Maxwell field equation for Static conform ally flat that charged perfect fluid sphere by using a suitable
form of mass density. The result gives uniform charge density and uniform mass density distribution also. Various physical
parameters can be calculated by using different boundary conditions. In spherical symmetric metric, we have solved Einstein-
Maxwell field equation by taking a suitable form of matter density and charge density hence various parameters can also be
calculated by putting varies conditions. Solutions of Electromagnetic equation and scalar field for cylindrically symmetric metric
(Satcher metric) in two different cases (i) directly solved in terms of F;; components (ii) in terms of two potentials 6, and 6;. The
thesis shows that starting from any solution to the electro vacuum field equation it is possible to generate a whole class of solution
to the Einstein-Maxwell mass less field equation by a suitable redefinition of one of the metric coefficients. Considering all these
facts this thesis is very-very useful for finding different parameters using different boundary conditions. Almost a century later,
the General Theory of Relativity remains the single most influential theory in modern physics, and one of the few that almost
everyone, from all walks of life, has heard of (even if they may be a little hazy about the details). Einstein’s General
Theory predicted the existence of black holes many years before any evidence of such phenomena, even indirect evidence, was
obtained, and was highly suggestive of an origin of the universe beginning with a Big Bang type event, although Einstein himself
was highly suspicious of both of those possibilities.
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