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I. Introduction

A ring is an additive abelian group R which is closed under a
second operation called multiplication-the product of two
elements x and y in R is written x y – in such a manner that

(i) multiplication is associative, that is if x, y, z are three
elements in R, then x(y z) = (x y) z;

(ii) multiplication is distributive, i.e. if x, y, z are three
elements in R, then

x ( y + z) = xy + xz

and (x + y) z = xz + yz.

R is called a commutative ring if x y = y x for all elements x
and y in R. If the ring R contains a non-zero element 1 with the

property that x.1 = 1.x = x for any x, then 1 is called the
identity elements and R is called a ring with identity. Let R be
ring with identity. If x is an element in R, then it may happen
that there is present in R an element y such that x y = y x = 1.
In this case there is only one such element, and it is written as
x-1 and called the inverse of x. If an element x in R has an
inverse then x is said to be regular. Elements which are not
regular are called singular. Regular elements are often
invertible elements, or non-singular elements.1

A linear space A is called an algebra if its vectors can be
multiplied in such a way that A is also a ring in which scalar
multiplication is related to multiplication by the following
property:-

α (x y) = (α x) y =  x (α y)

where x , y ∈ A and α is a scalar.

Since an algebra is also a ring, it may be commutative or non-
commutative and may or may not have identity; and if it does
have identity, then we can speak of its regular and singular
elements. An algebra is real or complex according as the field
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of scalars is the set of real or complex number respectively. A
subalgebra of an algebra A is non-empty subset A0 of A which
is an algebra in its own right with respect to the operations in
A. An ideal in an algebra A is defined to be a subset I with the
following three properties:-

(i) I is a linear subspace of A;
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(ii) i ∈ I ⇒ x i ∈ I for every element x ∈ A;

(iii) i ∈ I⇒ i x ∈ I for every elements x ∈ A.2

We define a maximal left ideal in A to be a proper left ideal
which is not properly contained in any other proper left ideal.
We define the radical R of A to be the intersection of all its
maximal left ideal. i.e. R = ∩ M L I.3

In analogy with these ideals we define a difference set in a real
or complex algebra A to be subset G with the following three
properties:-

(i) G is a difference set of  A, regarding A as a linear
space.

(ii) g ∈ G⇒ x g ∈ G, for every element x ∈ A.

(iii) g ∈ G⇒ g x ∈ G, for every element x ∈ A.

P be a partially ordered set with “ ≤  ” as partial ordering. An

elements x in P is said to be maximal if y ≥ x⇒ y = x, i.e. if
no element other than x itself  is greater than or equal to x. Let
A be a non-empty subset of a partially ordered set P. An
element y in P is said to be an upper bound of A if a ≤ y for
every a ∈ A. According to Zorn’s lemma if P is a partially
ordered set in which every chain has an upper bound then P
possesses a maximal element.4 A and A' be algebras which are
both real or both complex. We define a homomorphism of A
into A' to be a mapping f of A into A' which preserves all the
operations in the sense that

f ( x + y) = f (x) + f (y),

f (α x) = α f (x), α being any scalar,

and f (x y) = f(x) f(y).

An isomorphism is one-one homomorphism and A is said to be
isomorphic to A' if there exists an isomorphism of A onto A'.5

A Banach algebra is a complex Banach space which is also an
algebra with identity 1 and in which the multiplicative structure
is related to the norm by the following requirements:-

(i) ‖ x y ‖ ≤ ‖ x ‖ . ‖ y‖,
(ii) ‖ 1 ‖ = 1.

It follows that xn → x, yn → y ⇒ xnyn → xy.1

Suppose T is a topology on a vector space X such that

a) every point of X is a closed set, and
b) the vector space operations are continuous with

respect to T, then T is said to be a  vector topology on
X, and X is called a topological vector space.

The closure Ē of  E ⊆ X is the intersection of all closed sets
that contain E.6

II. Theorems
Theorem1: Let A be an algebra. Let G1, G2, ……….., Gn be
difference sets of A and α1, α2, ……., αn be scalars then

1

n

i
i iG


 is a difference set of A.

Proof :
1

n

i
i iG


 is a difference set regarding A as a linear

space.

Let z ∈ α1 G1 + α2 G2 + …….+ αn Gn

We can write

z = α1 g1 + α2 g2 + …….+ αn gn ,

where gi ∈ Gi , i = 1,2,……,n.

let x ∈ A, then

x z = x (α1 g1 + α2 g2 + …….+ αn gn)

= α1 x g1 + α2 x g2 + …….+ αn x gn∈ α1 G1 + α2 G2 + …….+ αn Gn (Since Gi is
a difference set of algebra A therefore xgi ∈ Gi )

and

z x = (α1 g1 + α2 g2 + …….+ αn gn) x

= α1 g1 x + α2 g2 x + …….+ αn gn x∈ α1 G1 + α2 G2 + …….+ αn Gn . Hence α1 G1

+ α2 G2 + …….+ αn Gn is a difference set of A.

Theorem 2 : Let G be a left difference set of an algebra A with
identity 1. If 1 ∈ G then G = A.

Proof: Since G is a left difference set of A, then

G ⊆ A (1)

Let x ∈ A then since 1 ∈ G, x.1 ∈ G, or x ∈ G.

Thus x ∈ A ⇒ x ∈ G.

Hence A ⊆ G(2) (2)
from (1) and (2) it follows that G = A.

Similarly if G is a right difference set of an algebra A
with identity 1 such that 1 ∈ G then G = A.

Finally, if G is a difference set of an algebra A with identity 1
such that 1 ∈ G then G =A.

Theorem3: Let G be a proper left difference set of an algebra
A with identity 1. G can be embedded in a maximal left
difference set of A.

Proof: Let P be a partially ordered set of all proper left
difference sets of A containing G, partially ordered by set
inclusion.
Let {Gi} be a chain in P, i.e., it is a totally ordered family of
proper difference sets of A each containing G.

Since G ∈ {Gi} this family is non-empty.
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Let H = Ui Gi , H is a difference set of A regarding A as
a linear space.

Let g ∈ H, then g ∈ Gi for some i . since Gi is a left
difference set,

x ∈ A ⇒ x g ∈ Gi

⇒ x g ∈ H.

Therefore H is a left difference set containing G. Since Gi is a
proper left difference set then by theorem2,

1  Gi .

Hence 1  H. Thus H is a proper left difference set of A
containing G.

Therefore H ∈ {Gi}.

Also for any i, Gi ⊆ H.Thus H is an upper bound of {Gi}.

Since {Gi} is any chain in P, we see that every chain in
P has an upper bound. Hence by Zorn’s lemma, if G is not
itself a maximal left difference set then there exists a maximal
left difference set G' of A such that G ⊆ G' ⊆ A.
Thus G can be embedded in a maximal left difference set of A.

Thus any proper left difference set in A can be embedded in a
maximal left difference set of A. Since {0} is a proper left
difference set, maximal left difference sets certainly exist.

Theorem4: Let A be an algebra with identity 1. Let G be a left
difference set of A such that G contains a left regular elements
then A = G.

Proof: Let G contain a left regular element x then there exists
another element y such that y x =1.

Since x ∈ G, y x ∈ G.

Hence 1 ∈ G.

Therefore by theorem2, G = A.

Similarly, if G is a right difference set containing a right
element the G = A.

Finally, if G is a difference set containing a regular
element then G = A.

Thus any proper difference set of A cannot contain a regular
element.

Theorem5: Let A , A' be algebras with the same field of
scalars. Let f be a homomorphism of A onto A' , then the image
of each difference set in A is a difference set in A' and the
inverse image of a difference set in A' is a difference set in A.

Proof: Let G be a difference set of A. Since f is also a linear
transformation of linear space A onto A', then f(G) is a
difference set of linear space A'.

Let z ∈ f (G) then z = f(g)   for g ∈ G.

Let x ∈ A'. Since f is onto, there exists a ∈ A such that x
= f(a).

Therefore x z = x f(g) = f(a) f(g) = f(a g) ∈ f(G), for a g∈ G.

Also z x = f(g) f(a) = f(g a) ∈ f(G), for  g a ∈ G.

Hence f(G) is a difference set of A'.

Let H be a difference set of A'. Then by theorem2, f -1 (H)
is a difference set of linear space A.

Let x ∈ f -1 (H), then f(x) ∈ H.

Let a ∈ A, then f(a) ∈ A'.

Hence f(a x) = f(a) f(x) ∈ H

⇒ a x ∈ f -1 (H).

Also f( x a ) = f(x) f(a) ∈ H

⇒ x a ∈ f -1 (H).

Hence f -1 (H) is a difference set in A.

Theorem6: Let A be a Banach algebra and G a proper left

difference set of A, then G is also a proper left difference set
of A.

First we prove Lemma: If A is difference set of a topological
vector space X then Ā is also a difference set.

Proof: Let x , y ∈ Ā then

x – y ∈ Ā – Ā.

Now A + A ⊆ A A  .3

Putting α = 1 and β = -1, we have

Ā – Ā ⊆ A A .

Hence x – y ∈ Ā – Ā ⊆ A A .

Since A is a difference set,

A – A ⊆ A⇒ A A ⊆ Ā.

Therefore x – y ∈ Ā.

This shows that Ā is a difference set.

Proof of the Theorem6: Since G is a difference set of

topological vector space A, then by above lemma, G is also
a difference set of linear space A.

Let g ∈ G , then there exists a sequence {gn} ⊆ G such that gn

→ g.

Let x ∈ A, then x gn → x g. But {x gn} ⊆ G and hence x g ∈
G .

Therefore G is a left difference set of A.
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Since G is a proper left difference set by theorem4, it cannot
contain a regular element.

Let S denote the set of singular elements of A,

then G ⊆ S.Now S is a closed set.Thus G ⊆ G ⊆ S.

Since 1  S, 1  G .

Hence G is a proper left difference set of A.
This completes the proof.

Similarly, if G is a proper right difference set of A, then G is
also a proper right difference set of A.

Finally, if G is a proper difference set of A  then G is a proper
difference set of A.

III. Concluding Remarks

Thus we have discussed difference sets, difference sets in
algebra, homomorphism of difference set in algebra and
difference set in a Banach algebra and proved interesting
results.
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