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In this paper we introduce difference sets in algebra. We study their properties and prove some
interesting results. We define amaximal difference set and show that a proper left difference set of an
algebra with identity can be embedded in a maximal difference set. Then we prove difference set
under homomorphism of one algebra to another. We also develop a difference set in context of a
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|. Introduction

A ring is an additive abelian group R which is closed under a
second operation called multiplication-the product of two
elements x and y in R iswritten X y — in such a manner that

(i) multiplication is associative, that is if X, y, z are three
dementsin R, then x(y z) = (x y) z;

(ii) multiplication is distributive, i.e. if x, y, z are three
elementsin R, then

X(y+2)=xy+xz

and (X +y)z=xz+yz

R is called a commutative ring if X y =y x for all elements x
andy in R. If thering R contains a non-zero element 1 with the
Since an algebrais also aring, it may be commutative or non-
commutative and may or may not have identity; and if it does
have identity, then we can speak of its regular and singular
elements. An algebraisreal or complex according as the field
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property that x.1 = 1.x = x for any x, then 1 is called the
identity elements and R is called a ring with identity. Let R be
ring with identity. If x is an element in R, then it may happen
that there is present in R an element y such that x y =y x = 1.
In this case there is only one such element, and it is written as
x* and called the inverse of x. If an element x in R has an
inverse then x is said to be regular. Elements which are not
regular are caled singular. Regular elements are often
invertible elements, or non-singular elements.’

A linear space A is caled an algebra if its vectors can be
multiplied in such a way that A is aso aring in which scalar
multiplication is related to multiplication by the following

property:-

a(xy)=(ax)y= x(ay)
wherex ,y € A and a is a scalar.

of scalarsisthe set of real or complex number respectively. A
subalgebra of an algebra A is non-empty subset A, of A which
is an algebra in its own right with respect to the operations in
A. Anideal in an algebra A is defined to be a subset | with the
following three properties:-

(i) lisalinear subspace of A;
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(i) i€l = Xie€lforevery element x € A;

(iiiyi €1 = i x € | for every elementsx € A2

We define a maximal left ideal in A to be a proper left ideal
which is not properly contained in any other proper left ideal.
We define the radical R of A to be the intersection of all its
maximal leftideal.i.e. R=n ML 2

In analogy with these ideals we define a difference set in areal
or complex algebra A to be subset G with the following three
properties:-
(i) G is a difference set of A, regarding A as a linear
space.

(i) ge G => X gE G, forevery element x € A.

(iii) ge G => g X € G, for every element x € A.

P be a partially ordered set with “ < ” as partial ordering. An

elements x in Pis said to be maximal if y 2 x = y = x, i.e. if
no element other than x itself is greater than or equal to x. Let
A be a non-empty subset of a partially ordered set P. An
element y in P is said to be an upper bound of A if a<y for
every a € A. According to Zorn’s lemma if P is a partially
ordered set in which every chain has an upper bound then P
possesses a maximal element.* A and A' be algebras which are
both real or both complex. We define a homomorphism of A
into A' to be a mapping f of A into A" which preserves all the
operations in the sense that

f(x+y)=f(x) +f(y),
f (a x) = a f (x), a being any scalar,

and f (xy)=1(x)f(y).

An isomorphism is one-one homomorphism and A is said to be
isomorphic to A" if there exists an isomorphism of A onto A"

A Banach algebra is a complex Banach space which is also an
algebrawith identity 1 and in which the multiplicative structure
isrelated to the norm by the following requirements:-

O Iyl iyl
(i) 1] =1.

Itfollowsthat X, — X, Yo — Y = XpYn — xy.!
Suppose T isatopology on avector space X such that

a) every point of X isaclosed set, and

b) the vector space operations are continuous with
respect to T, then T is said to be a vector topology on
X, and X is called atopological vector space.

The closure E of E € X is the intersection of al closed sets
that contain E.°

1. Theorems
Theoreml: Let A be an algebra. Let Gy, G, ........... , G, be
difference sets of A and ay, Oy ....... , a, be scalars then

n
Z:(':liGi is adifference set of A.
i=1

n
Proof : Z:aiGi isadifference set regarding A asalinear
i=1

space.
Letzeo,G+a, Gy ...l +0,G,
We can write
Z=0101+ 00 Gos vevnnns + 0n Gn,

whereg € G ,i=1.2,...... n.
let x € A, then
XZ=X(A1g1+ 02 Qo oeenen + 0, Gn)
= Xt UaXOos eenne + 0p X0

E0;Gi+0; Gy ... +a,G, (SinceG; is
adifference set of algebra A therefore xg; € G;)

and
ZX=(01 Q1+ 0o Oos vvvnenn + 0, gn) X
=010 Xt 0202 Xt ounnnns + 0, Oh X

€0;Gi+0, Gy ... +0a,G, .
+0, Goy oonnns + 0, G, isadifference set of A.

Theorem 2 : Let G be aleft difference set of an algebra A with
identity 1. If 1 € Gthen G = A.

Proof: Since G is al€ft difference set of A, then
GCcA Q)

Hence 0, G;

Letx € Athensincele G, x.1€G,orxe€G.

Thus xeA = xeG.
Hence A S G(2) (2)
from (1) and (2) it followsthat G = A.

Similarly if G is aright difference set of an algebra A
with identity 1 such that 1 € G then G = A.

Finaly, if G is a difference set of an algebra A with identity 1
such that 1 € G then G =A.

Theorem3: Let G be a proper left difference set of an algebra
A with identity 1. G can be embedded in a maximal left
difference set of A.

Proof: Let P be a partially ordered set of all proper left
difference sets of A containing G, partially ordered by set
inclusion.

Let {G} beachaninP, i.e, it is atotally ordered family of
proper difference sets of A each containing G.

Since G € { G} thisfamily is non-empty.
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Let H=U; G , Hisadifference set of A regarding A as
alinear space.

Let g € H, then g € G, for some i . since G, is a left
difference s,

XEA = XQgEG

= XgeH.

Therefore H is a left difference set containing G. Since Gi isa
proper |eft difference set then by theorem?2,

1¢ G.
Hence 1 ¢ H. Thus H is a proper left difference set of A
containing G.
ThereforeH € {G}.
Alsoforany i, G; € H.
Thus H is an upper bound of { G}.

Since {G;} isany chain in P, we see that every chainin
P has an upper bound. Hence by Zorn’s lemma, if G is not
itself a maximal left difference set then there exists a maximal
left differenceset G'of A such that G G' C A.

Thus G can be embedded in a maximal |eft difference set of A.

Thus any proper left difference set in A can be embedded in a
maximal left difference set of A. Since {0} is a proper left
difference set, maximal left difference sets certainly exist.

Theorem4: Let A be an algebra with identity 1. Let G be aleft
difference set of A such that G contains a left regular elements
then A=G.

Proof: Let G contain a left regular element x then there exists
another element y such that y x =1.

Sincex e G,y x € G.
Hencele G.
Therefore by theorem2, G = A.

Similarly, if G is aright difference set containing a right
element the G = A.

Findly, if G is a difference set containing a regular
element then G = A.

Thus any proper difference set of A cannot contain a regular
element.

Theorem5: Let A , A' be algebras with the same field of
scalars. Let f be ahomomorphism of A onto A', then the image
of each difference set in A is a difference set in A" and the
inverse image of adifference setin A'isadifference setin A.

Proof: Let G be a difference set of A. Since f is also a linear
transformation of linear space A onto A', then f(G) is a
difference set of linear space A'.

Letzef(G)thenz=1f(g) forge G.

Let x € A'. Sincef isonto, there exists a € A such that x
=f(a).

Therefore x z = x f(g) =f(a) f(g) = f(ag) € f(G), forag
€G.

Also zx =f(g) f(a) =f(g a) € f(G), for gae G.
Hence f(G) isadifference set of A'.

Let H be adifference set of A". Then by theorem?2, f * (H)
isadifference set of linear space A.

Letx € f *(H), thenf(x) € H.
Leta€ A, thenf(a) € A"
Hencef(ax) =f(a) f(x) e H

= axef(H).
Also f(xa)=f(x)f(a) eH

= xa ef*(H).
Hencef " (H) isadifference setin A.

Theorem6: Let A be a Banach algebra and G a proper left

difference set of A, then G isdsoa proper left difference set
of A.

First we prove Lemma: If A is difference set of a topological
vector space X then A is also a difference set.

Proof: Letx , y € Athen
-A

X—-YE
Nowa A+ bAC aA+bAS

Puttinga =1 and = -1, we have

A-Ac A-A.

Hencex-ye A-Ac A — A.
Since A is adifference set,

A-AcA=> A - ACA.

Thereforex —y € A.

This shows that A is a difference set.
Proof of the Theorem6: Since G is a difference set of
topological vector space A, then by above lemma, 6 is aso
adifference set of linear space A.

Letge 6 , then there exists a sequence { g} € G such that g,
End g.
Letx € A, thenx g, - x 0. But {x g,} € GandhencexgEe
G.

Therefore 6 isaleft difference set of A.
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Since G is a proper left difference set by theoremd, it cannot
contain aregular element.

Let Sdenote the set of singular elements of A,
thenG c S.

Now S is a closed set.
ThusGe G € S.

Sincel ¢ S 1 ¢ 6

Hence 6 is a proper left difference set of A.
This compl etes the proof.

Similarly, if G isaproper right difference set of A, then 6 is
also a proper right difference set of A.

Finaly, if G isaproper difference set of A then 6 isaproper
difference set of A.

I11. Concluding Remarks

Thus we have discussed difference sets, difference sets in
algebra, homomorphism of difference set in agebra and
difference set in a Banach agebra and proved interesting
results.
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