

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 7, Issue, 03, pp.13764-13768, March, 2015 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

VISCOSITY AND THERMODYNAMIC STUDY OF CRUDE OILS IN BENZENE

*Summyia Masood, Rehana Saeed, Maria Ashfaq and Saima Naz

Department of Chemistry, University of Karachi, Karachi-75270, Pakistan

ARTICLE INFO

ABSTRACT

Article History: Received 21st December, 2014 Received in revised form 05th January, 2015 Accepted 25th February, 2015 Published online 31st March, 2015

Key words:

Viscosity, Benzene, Crude oils, Solute-solvent interaction, Thermodynamic parameters. Viscosities for different concentrations of crude oil solutions from 10 to 50 %(v/v) have been studied using benzene as a solvent at temperature ranging from 303 to 318 K. Four different relations: Huggins, Kraemer, Martin and Schulz-Blaschke were used to study the oil solution interaction in benzene by viscosity measurement. Viscometric constant values in terms of solute-solvent interaction. These relations were successfully applied for the study of macromolecular interaction. The validity of these relations concerning the interaction of crude oils with benzene was studied. Thermodynamic parameters for viscous flow were also evaluated such as free energy change of activation (ΔG^*), enthalpy change of activation (ΔH^*) and entropy change of activation (ΔS^*) as a function of concentration of crude oil solutions and temperature.

Copyright © 2015 Summyia Masood et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Crude oil is the raw form of petroleum which is unrefined and chemically is a complex mixture of hydrocarbons, with small amounts of sulphur, oxygen, and nitrogen, as well as various metallic constituents. It is a source to produce energy using as a fuel, power generation, heat production for our homes, etc. are several important domestic and industrial applications of crude oil (Oyekunle, et al., 2004; Ghannama, et al., 2006; Elsharkwy, et al., 2001; Lesaint, et al., 2010). Viscosity and density data of liquids and liquid mixtures find broad application in solution theory and molecular dynamics which is essential for thermo chemical, electrochemical, biochemical and kinetic studies. Study for viscosity of crude oils provides valuable information about solvent-solvent interaction required in petroleum engineering (Hashim, et al., 2003; Poindexter, et al., 2002). The behavior of petroleum fluids at oil field conditions can understand by knowing the viscosities of pure hydrocarbons and their mixtures (Hernandez-Galvan, et al., 2007). It is an important technique for the study of thermodynamic and various physical properties such as pressure, temperature, solution gas-oil ratio, bubble point pressure, gas gravity and oil gravity etc (Torabia, et al., 2011; Evdokimova, 2010; Kouzel, 1965). In petroleum industry, water-in-oil (w/o) emulsions can lead to massive economic losses if not treated properly. Research data (Hannisdala, et al., 2007; Fournantyab, et al., 2008; Hasan, et al., 2010) for water-in-oil emulsions is available but in pure solvent require more study.

***Corresponding author: Summyia Masood,** Department of Chemistry, University of Karachi, Karachi-75270, Pakistan. Crude oils obtained from different geographical locations vary in physical properties. The purpose of this study is to use the viscosity data of crude oil samples taken from local and international areas in benzene as a solvent to evaluate crude oil solvent interaction using different relations. The validity of macromolecular relations is applied on the crude oils. Physicochemical properties and thermodynamic parameters for viscous flow of crude oils as a function of concentration of crude oil solutions were also calculated.

MATERIALS AND METHODS

All the glassware used were of Pyrex 'A' grade quality. Crude oils used in the experimental work was obtained from different local and international areas like Upper zukkum, Mazari, Lashari, Pasaki, Sono and Iranian light, Arabian light, termed as sample A, B, C, D, E, F and G respectively. Benzene (C₆H₆, HPLC grade, 99 % pure of Merck) was used without further purification. Densities and viscosities of pure benzene obtained from literature (Parthasarathi, et al., 2011; Al-Kandary, et al., 2006). An Ostwald viscometer type Techniconominal constant 0.05 Cs.s⁻¹ capillary ASTM D 445, was used to measure the viscosity at different temperatures ranging from 303 to 318 K with the interval of 5 K. For keeping the temperature constant throughout the experiment work, a thermostatic water bath (type Haake-13, Karlsruhe, Germany) was used. Different percent compositions of crude oil samples were prepared in pure benzene as a solvent by taking a known volume of samples concentrations (10, 20, 30, 40 and 50 %v/v). Particular volumes of crude oils sample solutions was

taken in viscometer, which is vertically placed in a glass tube attached with thermostatic water bath having a constant circulation of water to maintain constant temperature during the experimental work. Time of flow for solutions between two marks was taken by stopwatch having a least count of + 0.5 seconds. Pipette filler used to fill the crude oil sample to the upper mark in the viscometer. The densities of crude oil solutions (10, 20, 30, 40 and 50 %v/v) A to G were also measured with relative density bottle having the capacity of 10 cm³. Reproducibility of the results was checked by taking each measurement three times. The values of uncertainty for viscosity and density measurement are ±0.002 mPa.s and ± 0.001 g.cm⁻³ respectively. All the precautions were made during experimental work due to hazards of benzene. Reproducibility of the results was checked by taking each measurement three times.

RESULTS AND DISCUSSION

Viscosities of different percent compositions (10, 20, 30, 40 and 50 %v/v) of crude oils sample (A, B, C, D, E, F and G) solution in benzene as a solvent at different temperatures ranging from 303 to 318 K with the interval of 5 K is tabulated in Table 1.

Table 1. Viscosities of crude oil mixtures in benzene at different temperatures

Percent composition of									
crude oil % (v/v)	Viscosities $(m.Pa.s)$ at temperatures (K)								
	303	308	313	318					
	Sample A								
10	11.890	11.836	11.693	11.560					
20	12.253	12.125	11.982	11.940					
30	12.396	12.358	12.318	12.247					
40	12.610	12.528	12.445	12.260					
50	12.700	12.956	12.850	12.688					
	Sample B								
10	11.875	11.663	11.500	11.380					
20	11.900	11.699	11.536	11.452					
30	12.330	11.990	11.856	11.461					
40	12.657	12.126	11.856	11.565					
50	12.850	12.150	12.056	11.823					
	Sa	mple C							
10	11.607	11.380	11.309	11.278					
20	11.840	11.465	11.423	11.338					
30	12.039	11.768	11.615	11.491					
40	12.100	11.900	11.754	11.557					
50	12.260	12.032	11.849	11.806					
	Sa	mple D							
10	11.906	11.700	11.544	11.430					
20	12.125	11.848	11.598	11.494					
30	12.205	12.107	11.875	11.790					
40	12.496	12.153	11.960	11.812					
50	12.789	12.262	12.203	12.098					
	Sa	mple E							
10	11.976	11.795	11.629	11.522					
20	12.367	12.126	11.823	11.547					
30	12.692	12.193	11.996	11.709					
40	12.839	12.226	12.081	11.885					
50	12.982	12.247	12.108	11.984					
Sample F									
10	12.121	11.994	11.851	11.754					
20	12.334	12.124	11.994	11.868					
30	12.643	12.449	12.251	12.142					
40	13.040	12.844	12.558	12.424					
50	13.873	13.393	13.286	12.980					
	Sample G								
10	12.182	12.024	11.983	11.912					
20	12.285	12.152	12.048	12.045					
30	12.687	12.613	12.540	12.429					
40	13.004	12.876	12.817	12.701					
50	13.784	13.774	13.670	13.477					

The intrinsic viscosities $[\eta]$ were calculated by using viscometric data, through graphical extrapolation method. The most commonly employed equations are Huggins, Kraemer, Martin and Schulz-Blaschke; equations 1 to 4, respectively. In order to apply these relations, practical determinations using different concentrations are carried out by counting the efflux time of these solutions through a capillary.

$\eta_{sp}/C = [\eta]_h + k_h [\eta]_h^2 C$	(1)
$\ln \eta_r / C = [\eta]_k - k_k [\eta]_k^2 C$	(2)
$\ln \eta_{\rm sp}/C = \ln[\eta]_{\rm m} + k_{\rm m} [\eta]_{\rm m} C$	(3)
$\eta_{sp}/\dot{C} = [\eta]_{sb} + k_{sb} \ [\eta]_{sb} \eta_{sp}$	(4)

where: C is the concentration of crude oil solution, $\eta_r = \eta / \eta_o$ is the viscosity of a solution with respect to the viscosity of a solvent; η_{sp} is the specific viscosity ($\eta_{sp} = \eta_r -1$); $[\eta]_h$ is the intrinsic viscosity or limiting viscosity number with respect to Huggins equation; $[\eta]_k$ (Huggin, 1942) is the intrinsic viscosity with respect to Kraemer equation; $[\eta]_m$ is the intrinsic viscosity with respect to Martin equation; $[\eta]_{sb}$ is the intrinsic viscosity with respect to Schulz-Blaschke equation; k_h , k_k , k_m and k_{sb} are the Huggins, Kraemer, Martin and Schulz-Blaschke coefficients, respectively.

 Table 2. Densities of crude oil mixtures in benzene at different temperatures

Percent composition of								
crude oil (v/v)	Densities $(g.cm^{-3})$ at temperatures (K)							
	303 308 313 318							
Sample A								
10	0.8748	0.8748	0.8684	0.8650				
20	0.8774	0.8730	0.8673	0.8690				
30	0.8773	0.8700	0.8700	0.8680				
40	0.8700	0.8680	0.8660	0.8650				
50	0.8670	0.8620	0.8600	0.8590				
	Sample B							
10	0.8649	0.8610	0.8580	0.8550				
20	0.8599	0.8540	0.8510	0.8490				
30	0.8559	0.8500	0.8480	0.8450				
40	0.8517	0.8460	0.8460	0.8380				
50	0.8460	0.8430	0.8420	0.8370				
	Sa	umple C						
10	0.8669	0.8629	0.8600	0.8580				
20	0.8610	0.8550	0.8540	0.8520				
30	0.8580	0.8520	0.8490	0.8450				
40	0.8530	0.8496	0.8460	0.8440				
50	0.8480	0.8440	0.8420	0.8400				
Sample D								
10	0.8511	0.8483	0.8440	0.8415				
20	0.8446	0.8409	0.8350	0.8330				
30	0.8410	0.8358	0.8350	0.8330				
40	0.8380	0.8328	0.8310	0.8290				
50	0.8790	0.8320	0.8293	0.8260				
	Sa	mple E						
10	0.8520	0.8470	0.8410	0.8380				
20	0.8435	0.8380	0.8370	0.8330				
30	0.8410	0.8350	0.8340	0.8320				
40	0.8368	0.8320	0.8290	0.8270				
50	0.8311	0.8280	0.8250	0.8220				
Sample F								
10	0.8530	0.8502	0.8499	0.8470				
20	0.8550	0.8497	0.8480	0.8460				
30	0.8520	0.8496	0.8470	0.8460				
40	0.8510	0.8510	0.8460	0.8442				
50	0.8500	0.8510	0.8460	0.8440				
	Sample G							
10	0.8710	0.8660	0.8660	0.8560				
20	0.8640	0.8630	0.8623	0.8550				
30	0.8630	0.8620	0.8620	0.8550				
40	0.8630	0.8610	0.8604	0.8500				
50	0.8620	0.8600	0.8561	0.8480				

Results for viscosity and density data are tabulated in Tables 1 and 2 respectively. The results show an increase in viscosity with the increase in concentration of crude oil at fixed temperature and decreased with increasing temperature.

 Table 3. Intrinsic viscosity and viscometric constants of crude oil mixtures in benzene at 308 K

Crude oil							
samples	Intrinsic viscosities (dL.g ⁻¹)						
	[η] _h		$[\eta]_k$		[η] _m		[η] _{sb}
Α	1.100		0.250		1.31	7	8.666
В	1.075		0.248		1.30)3	16.31
С	1.048	1.048		.245	1.26	55	11.57
D	1.082	2 0		.248	1.31	3	15.37
E	1.089	1	0	.249	1.32	23	17.96
F	1.105	5 0		.250	1.30)8	6.045
G	1.004	0		.250	1.29	91	4.621
0 1 1	Viscometric constants						
Crude oil				Viscomet	ric constan	ts	
samples	k _{h x 1}	0 k	⁴ k x 10	Viscomet k _{m x 10}	ric constan k _{sb x 10}	ts o k _h	$+ k_{k x 10}$
samples A	k _{h x 1} -0.162	0 k	⁶ k x 10 717	$k_{m x 10}$ -0.279	ric constan k _{sb x 10} -0.8	$\frac{k_h}{27}$	$+ k_{k \times 10}$ -0.879
A B	k _{h x 1} -0.162 -0.168	0 k -0.7 -0.7	^{K_{k x 10} 717 730}	$k_{m x 10}$ -0.279 -0.291	ric constan k _{sb x 10} -0.8 -0.8	ts 5 k _h 527 594	$k_{k \times 10}$ -0.879 -0.898
A B C	k _{h x 1} -0.162 -0.168 -0.172	0 k -0.7 -0.7 -0.7	^{K_{k x 10} 717 730 744}	Viscomet k _{m x 10} -0.279 -0.291 -0.297	ric constan k _{sb x 10} -0.8 -0.8 -0.8	ts 27 94 95	$k_{k \times 10}$ -0.879 -0.898 -0.916
A B C D	k _{h x 1} -0.162 -0.168 -0.172 -0.167	0 k -0.7 -0.7 -0.7 -0.7	^{K_{k x 10} 717 730 744 726}	$\begin{array}{r} \hline Viscometr} \\ \hline k_{m x 10} \\ \hline -0.279 \\ -0.291 \\ -0.297 \\ -0.288 \end{array}$	ric constan k _{sb x} 10 -0.8 -0.8 -0.8 -0.8 -0.8	ts 527 194 195 181	$k_{k \times 10}$ -0.879 -0.898 -0.916 -0.893
A B C D E	k _{hx1} -0.162 -0.168 -0.172 -0.167 -0.165	0 k -0.7 -0.7 -0.7 -0.7 -0.7	^{K_{k x 10} 717 730 744 726 723}	$\begin{array}{r} \hline k_{m x 10} \\ \hline -0.279 \\ -0.291 \\ -0.297 \\ -0.288 \\ -0.287 \end{array}$	ric constan k _{sb x 10} -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8	ts 27 294 395 381 385	$+ k_{k \times 10}$ -0.879 -0.898 -0.916 -0.893 -0.888
A B C D E F	k _{h x 1} -0.162 -0.168 -0.172 -0.167 -0.165 -0.147	0 k -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	^{K_{k x 10} 717 730 744 726 723 715}	$\begin{array}{c} \hline k_{mx10} \\ \hline -0.279 \\ -0.291 \\ -0.297 \\ -0.288 \\ -0.287 \\ -0.275 \end{array}$	ric constan	ts 227 294 295 281 285 291	$+ k_{k \times 10}$ -0.879 -0.898 -0.916 -0.893 -0.888 -0.862
A B C D E F G	$\begin{array}{r} k_{hx1} \\ -0.162 \\ -0.168 \\ -0.172 \\ -0.167 \\ -0.165 \\ -0.147 \\ -0.192 \end{array}$	0 k -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7	^{K_{k x} 10 717 730 744 726 723 715 717}	$\begin{array}{c} \hline k_{mx10} \\ \hline -0.279 \\ -0.291 \\ -0.297 \\ -0.288 \\ -0.287 \\ -0.275 \\ -0.274 \\ \end{array}$	ric constan	ts 227 294 295 281 285 291 261	$+ k_{k \times 10}$ -0.879 -0.898 -0.916 -0.893 -0.888 -0.862 -0.909

 Table 4. Thermodynamic parameters for 20 % crude oil mixtures in benzene at different temperatures

	Enthalpy change of	Free Energy	Entropy change					
Temperature	Activation (ΔH*)	change of	of Activation					
(K)	(kJ mol ⁻¹)	Activation $(-\Delta G^*)$	(ΔS^*) (kJ mol ⁻¹)					
		(kJ mol ⁻¹)						
Sample A								
303		11.092	31.935					
308	1.415	11.299	32.097					
313		11.515	32.270					
318		11.709	32.371					
	Sample B							
303		11.170	30.469					
308	1.938	11.393	30.697					
313		11.614	30.915					
318		11.819	31.073					
	Sa	mple C						
303	54	11 178	29.829					
308	2 139	11 444	30.213					
313	2.137	11.640	30.353					
318		11.846	30.523					
Sample D								
303		11.118	26.998					
308	2.937	11.360	27.347					
313		11.612	27.716					
318		11.809	27.899					
Sample E								
303		11.121	28.653					
308	2.438	11.366	28.984					
313		11.579	29.203					
318		11.797	29.429					
Sample F								
303	1 000	11.015	29.785					
308	1.990	11.302	30.232					
313		11.513	30.425					
318		11.725	30.613					
202	Sa	mple G	22.022					
303	0.007	11.085	33.922					
308	0.806	11.318	34.129					
313		11.479	34.101					
318		11.685	34.210					

Results show that with the increase in temperature kinetic energy of molecules increases which decreased the viscosity of oil solution because heat has a strong influence on viscosity of high molecular weight components in the crude oil.

From density data it is shown that with the increase in concentration and temperature of crude oil solutions density decreased as shown in Table 2. This decreased may be due to disturbance in composition of crude oil solutions in Benzene. As crude oils comprises of two heaviest, most polar fractions that is asphaltenes and resins. Asphaltenes which is structurally quite complex, have some common features: a polynuclear aromatic core, certain degree of saturated substituents, and little content of nitrogen, oxygen, and/or sulfur. This portion of crude oil is insoluble in alkane solvents but soluble in aromatic solvents (benzene or toluene).

Resins, is a low molecular weight versions of asphaltenes with a higher degree of overall saturation. Due to the solubility of asphaltenes in benzene causing decreased in density while viscosity increased (Parthasarathi, et al., 2011). The results tabulated in Table 1 also show that for sample G highest value of viscosity were obtained while for sample C least values were observed in benzene. The specific viscosity determines the contribution of the solute to the viscosity of the solution. Thus, from measurements of specific viscosity, it is possible to attain the intrinsic viscosity through graphic extrapolations by using different relations as Huggins, Kraemer, Martin and Schulz-Blaschke; equations. The intrinsic viscosity $[\eta]$ provides information about the hydrodynamic volume of a macromolecule in a solvent. Intrinsic viscosity and viscometric constant using different relations for crude oils in benzene are tabulated in Table 3. The respective intrinsic viscosity was calculated by graphic extrapolations as shown in Fig. 1. It was observed that best straight line obtained by Martin equation. Huggins and Kraemer coefficients are used to evaluate the solvent quality and used for very dilute solutions while Martin Schulz-Blaschke equations were used for a long range of concentration. Basically these relations (1-4) used for high molecular weight solute related to macromolecule-solvent interactions.

Fig. 1. Plot of ln η_{sp}/C versus C (concentration of crude oil) sample E solution at 308 K

Results tabulated in Table 3, show that for all samples of crude oil the values of intrinsic viscosity were positive, hence

benzene would be considered as a good solvent for crude oil samples. In a good solvent where the energy of interaction between a solute segment and a solvent molecule adjacent to it exceeds the mean of the energies of interaction between the solute-solute and solvent-solvent pairs, the macromolecule will tend to expand further so as to reduce the number of contacts between pairs of macromolecule elements.

Therefore, the solute molecule will be in a much extended form in a good solvent. The value of the intrinsic viscosity will be high in a good solvent, as the molecule is much extended. The highest value of intrinsic viscosity obtained for Schulz-Blaschke equation. In a poor solvent, on the other hand, where the energy of interaction is unfavorable, a small configuration in which solute-solute contacts occur more frequently will be favored, and the solute will tend to occupy a tightly rigid form, resulting in a lowering of the intrinsic viscosity. The plots of equations 1 to 4 are linear and values of k_h , k_k , k_m and k_{sb} are negative. The negative values of viscometric constants show that the higher the affinity between macromolecule and solvent, the lower the value of viscometric constants. From Table 3 it was shown that for all samples of crude oil the values of viscometric constants were negative, hence benzene should be considered as a good solvent. This behavior was also supported by Kraemer constant (k_k) because negative values of Kraemer coefficients indicate good macromolecule solvation.

The intrinsic viscosity is a measure of the shape and size of the isolated macromolecule and a measure of the solvent power and Huggins constant (k_h) is a measure of the hydrodynamic interaction. A change of temperature affects the coefficient values; $(k_h, k_k, km \text{ and } k_{sb})$, due to modifications in the macromolecule-macromolecule and macromolecule-solvents interactions. Thus the interpretation of different temperature data provides a useful way to obtain information about the interactions particularly (Saeed *et al.*, 2014). From Table 3 it was shown that the vales of k_h , k_m and k_k , k_{sb} are close for all the samples of crude oils.

Thermodynamic data of crude oil viscosity as a function of temperature and composition are required for reservoir studies and hot pipelines (Hemmingsena, *et al.*, 2005). The values of thermodynamic parameters for viscous flow were also calculated for all the samples of crude oil solutions as shown in Table 4.

$$\log \eta = (\log 103 - \Delta S^*/R) + \Delta H^*/RT$$
(5)

where, η is the viscosity of solution, R is the gas constant, ΔS^* is the entropy change of activation, ΔH^* is the enthalpy change of activation and T is the absolute temperature.

The results for enthalpy change of activation (Δ H*) tabulated in Table 4, it was observed that highest value of Δ H* obtained for sample D while least value obtained for sample G. From equation 5 by plotting a graph between log η versus 1/T as shown in Fig. 2, and slope gives the values of enthalpy change of activation (Δ H*) which increased with the increase in concentration due to production of strong forces between solute and solvent molecules.

Fig. 2. Plot of log η versus 1/T of sample C solution in different percent composition of benzene

The values of free energy change of activation (ΔG^*) controls the rate of flow in fluid processes. The free energy change of activation (ΔG^*) of viscous flow is given by the equation.

$$\Delta G^* = 2.303 \text{ RT} \log (\eta / 103) \tag{6}$$

The values of free energy change of activation (ΔG^*) decreased with the increase in temperature of crude oil solutions as shown in Table 4.

The relation between activation entropy and enthalpy is given by the equation as shown in Table 5:

$$\Delta S^* = \Delta H^* - \Delta G^* / T \tag{7}$$

The values of entropy change of activation (ΔS^*) increased with increase in temperature of crude oil solutions for all samples indicates the disordered system and orientation of molecules disturbed with the change in temperature.

Conclusion

The validity of different relations for crude oils and benzene system was studied and concluded that they can be applied for evaluation of interaction of crude oils and benzene as applied for macromolecule and solvent systems. The positive values of intrinsic viscosity show that benzene act as a good solvent for all crude oil samples. Thermodynamic parameters were also evaluated by the viscosity data as a function of temperature and crude oil concentration. The increased in entropy change of activation also confirmed the disorderness in solvent system.

REFERENCES

Al-Kandary, J. A., Al-Jimaz, A. S. and Abdul-Latif, A. M. 2006. Densities, Viscosities and Refractive Indeces of Binary Mixtures of Anisole with Benzene, Methylbenzene, Ethylbenzene, Propylbenzene and Butylbenzene at 293.15 and 303.15 K, J Chem Eng Data., 51: 99-103.

- Elsharkwy, A. M. and Gharbi, R. B. C. 2001. Comparing Classical and Neural Regression Techniques in Modeling Crude Oil Viscosity, *Advan Eng Software*, 32: 215–224.
- Evdokimova, I.N. 2010. The Importance of Asphaltene Content in Petroleum II—Multi-peak Viscosity Correlations, Pet Sci Technol., 28: 920–924.
- Fournantyab, S., Guera, Y. L., Omaria, K. E. and Dejeanb, J. -P. 2008. Laminar Flow Emulsification Process to Control the Viscosity Reduction of Heavy Crude Oils, *J Disp Sci Technol.*, 29: 1355–1366.
- Ghannama, M. T. and Esmailb, N. 2006. Flow Enhancement of Medium-Viscosity Crude Oil, *Pet Sci Technol.*, 24: 985– 999.
- Hannisdala, A., Hemmingsena, P. V., Silseta A and Sjöbloma, J. 2007. Stability of Water/Crude Oil Systems Correlated to the Physicochemical Properties of the Oil Phase, *J Disp Sci Technol.*, 28: 639–652.
- Hasan, S. W., Ghannam, M. T. and Esmail, N. 2010. "Heavy Crude Oil Viscosity Reduction and Rheology for Pipeline Transportation", *Fuel*, 89: 1095–1100.
- Hashim E. T. and Hassaballah, A. A. 2003. An Improved Viscosity-Temperature Correlation for Crude Oils", *Pet Sci Technol.*, 21: 1625-1630.
- Hemmingsena, P. V., Silseta, A., Hannisdala, A. and Sjöbloma J. 2005. Emulsions of Heavy Crude Oils. I: Influence of Viscosity, Temperature, and Dilution, *J Disp Sci Technol.*, 26: 615–627.
- Hernandez-Galvan, M. A., Garc'ıa-Sanchez, F. and Mac'ıas-Salinas, R. 2007. Liquid Viscosities of Benzene, N-Tetradecane, and Benzene + N-Tetradecane from 313 to 393 K and Pressures up to 60 Mpa: Experiment and Modeling, *Fluid Phase Equilibr.*, 262: 51–60.

- Huggin, M. L. 1942. The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration, J Am Chem Soc., 64: 2716-2718.
- Kouzel, B. 1965. How Pressure Affects Liquid Viscosity, Hydrocarbon Proc Pet Refin., 44: 120–127.
- Lesaint, C., Spets, Ø., Glomm, W. R., Simon, S. and Sjöblom, J. 2010. Dielectric Response as a Function of Viscosity for Two Crude Oils with Different Conductivities, *Colloids Surf A.*, 369: 20–26.
- Oyekunle L. O. and Famakin, O. A. 2004. Studies on Nigerian Crudes. I. Characterization of Crude Oil Mixtures, *Pet Sci Technol.*, 2: 665-675.
- Parthasarathi, S., Saravanakuamr, K., Baskaran, R. and Kubendran, T. R. 2011. A Volumetric and Viscosity Study for the Binary Mixtures of Dimethylsulfoxide with Benzene, Ethyl benzene, Chlorobenzene and Bromobenzene at Temperatures of (303.15, 308.15 and 313.15) K and a Pressure of 0.1MPa", *Int J Sci Tech.*, 1: 96-101.
- Poindexter, M. K., Zaki, N. N., Kilpatrick, P. K., Marsh, S. C. and Emmons, D. H. 2002. Factors Contributing to Petroleum Foaming- Part I: Crude Oil Systems, *Energ. Fuels*, 16: 700-710.
- Saeed, R. Masood, S. and Siddiqui, N. H. 2014. The Viscosity of crude oils in 1, 4 dioxan, *Petrol Sci Technol.*, 32: 688-695.
- Torabia, F., Abediniab, A. and Abedinic, R. 2011. The Development of an Artificial Neural Network
