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The present paper describes and studies the flow of two immiscible fluids in a cylindrical porous
medium. Initially, the porous medium is partially filled with oil and then water is passed through it.
Since oil and water are non-mixing nature of fluids, the instabilities occur at the interface. In this
paper, the phenomenon of instabilities in the polyphasic flow through homogeneous porous medium is
discussed under the assumption of mean capillary pressure. The resulting governing equation is a
linear partial differential equation which gives the saturation of water at any point in the cylinder at
any time. The analytical solution has been obtained using two different methods - the Laplace
transform and the similarity solutions via infinitesimal Lie group of transformations. The solution is
also analysed graphically.
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INTRODUCTION

When a porous medium filled with some fluid is brought into contact with another fluid which preferentially wets the medium, it
is observed that there is a spontaneous flow of the wetting fluid into the medium and a counter flow of the resident fluid from the
medium. This arises in physical situations involving multiphase flow systems. The phenomenon of instabilities in polyphasic flow
through homogeneous porous medium without capillary pressure was discussed by Scheidegger and Johnson. The behaviour of
instabilities in a displacement process through heterogeneous porous medium with capillary pressure was examined by Verma. In
the present paper, the phenomenon of instabilities in polyphasic flow through homogeneous porous medium with mean capillary
pressure has been discussed. The resulting governing equation is a non-linear partial differential equation.

Formulation of the Problem

We consider a cylindrical mass of porous matrix of length L that is initially saturated with non-wetting fluid say oil. We assume
that the lateral boundaries of the medium as well as one of the cross-sectional faces are impermeable while the only remaining
open end is exposed to an adjacent formation of fluid say water which wets the medium preferentially relative to oil. Such
circumstances give rise to the phenomenon of linear counter current imbibitions in which there is a spontaneous linear flow of
wetting fluid i.e. water into the porous medium and a linear counter flow of the native fluid i.e. oil from the medium. This gives
rise to the instabilities at the interface between the two fluids. For the flow system, the seepage velocity of the wetting and the
non- wetting phases are given respectively as
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where wk and ok are the respective relative permeabilities of water and oil, K is the permeability of the porous medium, wP

and oP are the pressures and w and o are the viscosities of the water and oil respectively.

Using the mathematical condition for the imbibitions phenomenon 0 ow vv , we will get
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From the definition of capillary pressure, we will get

wco PPP 

Differentiating with respect to x , we will get

x

P

x

P

x

P wco










 )4(

Using equation )4( in )3( and simplifying, we will get

x

P
kk

v

k

x

P c

o

o

w

w

o

o

w














)5(

Using equation )5( in equation )1( , we will get
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The equation of continuity for wetting phase is given by
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The capillary pressure cP is a decreasing function of saturation of wetting phase and is related as
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Using equation )9( in equation )7( , we will get
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Since the porous medium is homogeneous, the porosity P and permeability K are constants.  Taking
o

o

P

Kk
a




 , equation

)10( will take the form
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which is a linear partial differential equation.

The relevant initial and boundary condition are

LXXSw  0,0)0,(

tttSw  ),(),0( 
  ttLxSw  ,0,

  ttxSw  ,0,

where  is Direct-delta function.

Analytical Solution

The linear partial differential equation given by  11 along with the initial and boundary conditions has been analytically

analysed using two different methods.

Laplace Transform method

We will use Laplace transformation to find the solution of )11(

Multiplying each term of )11( by tde st
and then integrating the resulting equation from 0 to  , we will get
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where 
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
0

),(),( tdtxSesxS w
ts

w represents the Laplace transform of ),( txSw

Now equation )12( is an ordinary differential equation with constant coefficients.

Its solution is given by
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),( txSw is saturation of water at any face x at any time t and a is constant depending on the medium.

The boundary conditions

)(),0(0)0,( ttSandxS ww 
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indicate the saturation of water from 0 xtoxx at time

tttot  0
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Therefore, the saturation of water wS at any time 0t and for length 0 < x < L is given by
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General Similarity Technique

We will use General Similarity technique to find the solution of )11( as discussed by Bluman and Cole.

Taking
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y  in )11( , it will take the form
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Substituting the infinitesimals yy and t in )15( and comparing the coefficients of various order derivatives of wS , we will get

a group of six- parameter equations which are given as
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where  ,,,, ml and  are all parameters and are constant. Invariance of 0y , 0t and )(),0( ttSw  reduce the six-

parameter equations to a subgroup of two-parameter equations which are given as
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We will discuss the solution under different cases.

Case 1 When 1,0  

From equation )17( we will get
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Case 2 When 1,0  

From equation )17( we will get
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Equating the two functional forms of the solutions given by equations )18( and )19(
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Graphical Representation

The solutions given by equations )14( and )20( represent the same value of saturation of water at any given time. Using

Mapple-12, it is plotted for different values of x and t . Here we have assumed the value of a as one. The graphs are shown as
below-
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Figure 1.

Figure 2(a). For 1x Figure 2(b). For 10x
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Figure 3(a). For 1t Figure 3(b). For 9t

Figure 4(a). Varying t between 5.05.0 to Figure 4(b). Varying t between 05.005.0 to

Conclusion

The present study shows that the analytical solutions obtained by Laplace transform method and by General Similarity technique
is same. Graphically we observe that the instabilities at the interface between the two immiscible fluids give rise to fingers. These
perturbations can be seen in Figures 1, 4(a) and 4(b). Keeping x constant and with the increase in the value of t, we can see that
the effect of exponential term is neglected but because saturation of water is inversely proportional to t, its value decreases with
the increase in the value of t. This can be seen in Figures 2(a) and 2(b) where it is plotted for two different values of x. Keeping t
constant, we can see that the saturation of water occurs as a product of linear function of x and the negative exponential function
of x. With the increase in the value of x, the nature of saturation is parabolic and it has the value zero for large values of x. This
can be seen in Figures 3(a) and 3(b) where it is plotted for two different values of t.
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