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1. INTRODUCTION 
 
The geometrical aspects of field theories have always aroused great interest, because of their intrinsic importance and for t
positive impact on the studied theories. In particular, the link between 
Gell-Mann and Lévy for studying the interaction between pions and nucleons
are maps among manifolds, and the action functional is created with th
clearly understood the importance of Kähler manifolds as requirement of target space for obtaining 
supersymmetry group (Zumino, 1979). Later
generators requires additional geometric structures; 
which determine different gauge choices.The multi
appropriate conditions of mutual compatibility. An important example is precisely provided by Kähler manifolds, where the 
Riemannian and complex structures are coupled in order to obtain a symplectic structure.
treat only with the supermultiplet of graviton. The presence of spin zero states involves new structures (
physical consequences (as the super-Higgsphenomenon). Field theories of particles with spin 1/2 and zero, which have some 
global symmetries under a transformations group 
to the Yang-Mills theory of the same group G

multiplet )0,0,21(  . 

If the Lagrangian contains also a non-trivial potential term 

present. This happens if )(W  admits extremes 
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ABSTRACT 

In this paper the important role of Kähler manifolds in the process of building supergravity theories is 
considered. After a brief introduction connected to particle physics and field theory, details about 
almost complex and complex structures, so as about the differential geometry of Kähler manif
will be done. Focusing then on D=4, N=1 supergravity, technical tools related to the coupling of pure 

N=1 supergravity to scalar and vector multiplets are also given.
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Higgsphenomenon). Field theories of particles with spin 1/2 and zero, which have some 
global symmetries under a transformations group G, can be made invariant under local gauge transformations if they are coupled 

G. It is the case of pure N = 1, D = 4 supergravity, as simple example, with the scalar 

trivial potential term )(W , as function of scalar fields 

admits extremes 0  : 

0
)(

0







W
,(1) 

to a subgroup HG. 

Viale Ratisbona 16,39042 Bressanone-Brixen,Italy.  
University of Verona, Lungadige Porta Vittoria 17, 37129 Verona, Italy 

Available online at http://www.journalcra.com 

International Journal of Current Research 
Vol. 7, Issue, 01, pp.11971-11980, January, 2015 

 

INTERNATIONAL 

 z 

F SUPERGRAVITY THEORIES: CHARACTERISTICS  

Viale Ratisbona 16,39042 Bressanone-Brixen,Italy 
, Italy 

 

 
 

manifolds in the process of building supergravity theories is 
considered. After a brief introduction connected to particle physics and field theory, details about 
almost complex and complex structures, so as about the differential geometry of Kähler manifolds, 

, technical tools related to the coupling of pure 
=1 supergravity to scalar and vector multiplets are also given. 

ribution License, which permits unrestricted use, 

 

The geometrical aspects of field theories have always aroused great interest, because of their intrinsic importance and for the 
models and geometry has been introduced in 1960 by 

1960). They understood that fields 
e only metric of the target manifold. Around 1970 Zumino 

clearly understood the importance of Kähler manifolds as requirement of target space for obtaining  - models with a 
it has been found that the extension of supersymmetry to a higher number of 

models with more complicated geometric structures have been introduced, 
are endowed with one or more tensor fields, linked by 

appropriate conditions of mutual compatibility. An important example is precisely provided by Kähler manifolds, where the 
onsidering the pure supergravity, we 

treat only with the supermultiplet of graviton. The presence of spin zero states involves new structures ( - models) and new 
Higgsphenomenon). Field theories of particles with spin 1/2 and zero, which have some 

, can be made invariant under local gauge transformations if they are coupled 
= 4 supergravity, as simple example, with the scalar 

function of scalar fields  , the Higgs phenomenon is 

 

INTERNATIONAL JOURNAL  
OF CURRENT RESEARCH  



In this case the gauge fields 
kA , corresponding to the broken generators of G, become massive “eating” the freedom degrees of a 

corresponding number of scalar fields. The spontaneous breaking of gauge symmetries via the Higgs mechanism is essential for 
applications of the Yang-Mills theory to the description of the interactions among elementary particles.It can thus be suggested the 
possibility of a spontaneous breaking of local supersymmetry, i.e. a super-Higgs phenomenon. Theories including scalar fields   

and having a scalar potential )(W  can have extremes 0   which are not invariant under supersymmetry, and therefore break 

it spontaneously. In this case, gravitinos corresponding to the generators of supersymmetry become massive “eating” the freedom 
degrees of spin 1/2 fields, partners of scalar fields  , which give a non-zero vacuum expectation value; this possibility is the basis 

of the phenomenological applications of supergravity. For having indeed consistency with phenomenology, supersymmetry must 
occur in Nature as a spontaneously broken symmetry.  
One of the main reasons for consider supergravity in the context of particle physics is its ability to solve, in the spontaneously 
broken version, the problem of “gauge hierarchy”, i.e. to stabilize the relation between the mass scale of the weak interactions and 
grand unification: 
 

1210
X

W

M

M
.(2) 

 
Differently from the Yang-Mills theory, in supergravity models )(W  is a consequence of supersymmetry, it is not “imposed 

from outside”. Moreover the same scalar field, which breaks supersymmetry, may also break bosonic gauge symmetries. One of 

the key points is that the scalar fields i , regardless of the belonging multiplet, can be regarded as the coordinates of a convenient 

differentiable manifold M  , endowed with a Riemannian metric )(ijg . The choice of the multiplet, of the number N of 

supersymmetries and of the space-time dimension D is reflected in the geometric properties of the manifoldM  (Isham, 1999; 

Drees, 1996).The scalar manifolds M    are normally Kähler manifolds. This fact has been proved in general considering the 
constraints that supersymmetry imposes on supersymmetricLagrangians involving Wess-Zuminomultiplets: the couplings 

described by these Lagrangians are compatible with supersymmetry only if the scalar fields )0,0(   parameterize a complex 

Riemannian manifold with a Kähler structure. In particular, the complex field: 
 

iii BiAz  ,   (3) 

 
is introduced, in such a way to locally underline the complex structure of the manifold. In the following we consider technical 
peculiarities of the differential geometry of Kähler manifolds, as well as Kähler geometry details for coupling of scalar and vector 
multiplets to D = 4, N = 1 pure supergravity(Bilal, 2001; Di Sia, 2014). 
 
 

2. ALMOST COMPLEX AND COMPLEX STRUCTURES ON A 2n-DIMENSIONAL MANIFOLD 
 
Let M  be a 2n-dimensional manifold, with T(M  ) as tangent space and T*(M  ) as cotangent space. The vectors of T(M  ) are the 
linear differential operators: 
 













 )()( ttt


.(4) 

 
The vectors of T*(M  ) are the differential 1-forms: 
 

)( 
d .(5) 

 
We can consider linear operators L on T(M  ): 
 

L : T (M  ) → T (M  ),(6) 
 
such that: 
 

t


T(M  ): Lt


T(M  );(7) 

 

  , ℂ,  21 , tt


 T(M  ):  Ltt )( 21


 LtLt 21


  .(8) 
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In every local chart, L is represented by a mixed tensor )(
L : 

 





  


)()( LtLt .(9) 

 
The action of L is naturally translated on the cotangent space: 
 

L : T*(M  ) → T*(M  ),(10) 
 

)()(  



 LdL  .(11) 

 
A 2n-dimensional manifold M  is said “almost complex” if it has an “almost complex structure”. An “almost complex structure” is 
a linear operator: 
 

J : T(M  ) → T(M  ),(12) 
 
that satisfies the property: 
 

J 2 = -1.(13) 
 

In every local chart the operator J is represented by a tensor )(
J  such that: 

 








  )()( JJ .(14) 

 

Moreover,  through  a  suitable  change  of  basis,  in  every point  P∈M   it is possible to reduce )(
J  in the form: 

 













01

10
)(

J .(15) 

 
A local frame with J given by (15) is said “well adapted frame”. Naming: 

 








e ,(16) 

 
the basis vectors of the well adapted frame, one has: 
 

neJe n    ;


, (17) 

 
neJe n    ;


.(18) 

 
Introducing a Latin index i = 1,…, n, we define the complex vectors: 
 

niii eieE 


,(19) 

 

niii eieE 


* ,  (20) 

 
obtaining: 
 

ii EiJE


 ,   (21) 

 

** ii EiJE


 .(22) 
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The tangent vectors iE


are the partial derivatives along the complex coordinates: 

 
niii iz   , (23) 

 

and *iE


 are the partial derivatives along the complex conjugates *iz : 

 

iii
z

E






,(24) 

*** iii
z

E






.(25) 

 
The existence of the almost complex structure ensures that in every point P∈M  it is possible to replace the 2n real coordinates 
with n complex coordinates, corresponding to a “well adapted frame”. Furthermore, each pair of well adapted frame is linked to 
each other by means of a coordinate transformation, which is a holomorphic function of the complex coordinates (Castellaniet 
al.,1991). 
 
 

3. KÄHLER AND HERMITIAN METRICS 
 
A “metric” g is a scalar-values symmetric bilinear functional on T(M  ) ⊗T(M  ): 
 

g:  T(M  ) ⊗T(M  )  →  ℝ;(26) 
 


 wugwug ),(


.  (27) 

 

It is: )()( xgxg   ; u  and w  are the components of the tangent vectors u


 and w


.Let M  be a 2n-dimensional manifold 

with an almost complex structure J. A metric g on M   is said “hermitian with respect to J” if: 
 

),(),( wugJwJug


 .(28) 

 

An almost complex manifold equipped with a hermitian metric g is said “almost complex Hermitian manifold”. ),( wug


 can be 

written as follows: 
 


 wugwug ),(

 **
**

*
*

*
*

ji
ji

ji
ij

ji
ji

ji
ij wugwugwugwug  .   (29) 

 
The following properties hold: 
 

a) reality of ),( wug


: 

 
*

** )( jiij gg  ,(30) 

 
*

** )( ijji gg  ;(31) 
 

b) symmetry of ),( wug


: 
 

,(32) 

 
;(33) 

 

c) hermiticity of ),( wug


:       

 
0**  jiij gg .   (34) 

jiij gg 

ijij gg ** 
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The metric g is represented by a Hermitian matrix *ijg : 
 

ijjiij ggg *
*

** )(  .   (35) 

 
The two-form:  
 

*
*

ji
ij zddzgi  .(36) 

 
is said “Kähler form”.  
 
A Hermitian metric on a complex manifold M   is said “Kähler metric” if the associated 2-form is closed: 
 

0d .   (37) 

 
A “Kähler manifold” is a Hermitian complex manifold endowed with a Kähler metric. 
 

4. DIFFERENTIAL GEOMETRY OF KÄHLER MANIFOLDS 
 
The general solution of Eq.(37) in every local chart is given by: 
 

Gg jiij **  ,   (38) 

 

where ),(* zzGGG   is a real function of iz and *iz . This function is said “Kähler potential“ and is defined at less of the real 

part of a holomorphic function f (z).  
According that Greeks indices span both i and i*, the Riemannian affine connection associated to Kähler metric *ijgg   

presents the form: 

 

 





gggg 









2

1
, (39) 

 

with: 
 





 gg .   (40) 

 
It holds also: 
 

*

*

kmj
im gg

kj

i










;(41) 

 

*

**

*






















kj

i

kj

i
;(42) 

 

0*** 

















kj

i

kj

i
;(43) 

 

0
*

*

*



























kj

i

kj

i
.(44) 

 

The covariant differential of an object iv  which transforms as a covariant vector is given by: 
 

kjii vdz
kj

i
dvv









 ,(45) 

and the Riemannian Kähler curvature by: 
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j
j

ii vRv 2 ;(46) 

 
nm

j
i

nmj
i zdzdRR 

*

* ; (47) 

 










jn

i
R

mj
i

nm ** .(48) 

 
Using the relation: 

 

 gln












,(49) 

 
we can write the Ricci tensor as (Castellaniet al.,1990; Crapset al.,1997; Mohaupt, 2000): 

 

 g
in

i
RR nmmi

i
nmnm

ln*** * 








 ,(50) 

 
with: 

 
2

*detdet 






ij
ggg  .(51) 

 
 

5. ON KÄHLER GEOMETRY FOR COUPLING OF SCALAR MULTIPLETS TO PURE D=4, N=1 
SUPERGRAVITY  
 

In pure N=1 supergravity we work with the vierbein aV , the “gravitino”   and the spin connection ab . From a particles point of 

view, aV ,   and ab  describe N=1 gravitational multiplet(2, 3/2). We now wants to couple this multiplet to nWess-

Zuminomultiplets(1/2, 0+, 0-), described by the set of 0-forms (i, Ai, Bi) (i = 1, ….., n), with Ai and Bi a real scalar and a real 
pseudo-scalar respectively, and i a Majoranaspinor.  
In this regard it is possible to introduce a set of complex fields zi: 
 

iii BiAz     ( iii
def

i BiAzz  *)(
*

),(52) 

 

considering them as coordinates of a complex n-dimensional manifold M  , to which we assign aKähler structure. On M  the 

Kähler potential: 
 

*);,(
*

GGzzGG ii  ,(53) 

 

is introduced, and also the chiral projections of spinors i  and  : 

 

iiiiiii 






2

1
;

2

1
; 55

** 



 ;(54) 

 
*

055 )(;;
*** iTiiiii C   ;(55) 

 








2

1
;

2

1
; 55 




 



 ; (56) 

 
*

055 )(;; 


   TC ;(57) 
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)
2

1
()

2

1
()( 5

0
5

0











 


 ;(58) 

 

)
2

1
()

2

1
()( 5

0
5

0











 

 ;(59) 

 

)
2

1
()( 5

0

* 



  iii ;   (60) 

 

)
2

1
()( 5

0

* 



  iii .(61) 

 

The coupling of scalar multiplets to pure supergravity corresponds to build a cross-section of the fiber bundle B(R4/4, M  ), which 

has the N=1 superspaceR4/4 as support space and the Kähler manifold M  as fiber. The z coordinate is a superfield ),( xzz ii  , 

therefore at every point ),( x ∈R4/4 of the support we associate a point iz ∈M  of the fiber. Expanding idz  in the (V ,  ) basis, 

we can write: 
 

ia
a

iia
a

ii VZVZdz    ,   (62) 

 
***** ia

a
iia

a
ii VZVZzd    ,   (63) 

 

having considered the rheonomic condition by writing that the “out” component of dz is  , i.e. the spin 1/2 field; therefore a
iZ  is 

a vector field and i  is a left-handed spinor field. The action of the Kähler transformation on fermionic fields can be considered 

as a chiral rotation. The Kähler connection is defined as: 

 

)(
2

1 *

*
i

i
i

i zdGdzG
i

Q  .   (64) 

 
The curvature of the Kähler connection is the 2-form K defined as: 
 

*
*

ji
ij zddzgidQK  .   (65) 

 
Using Eqs (62, 63) and defining the quantities: 
 

i
ijab ZgiK * a

*jZ b,   (66) 

 

*

*

ij
j

a
i

a gT  ,   (67) 

 
aji

ij
a Zgi

*

*   ,   (68) 

 

a
ji

ji
C

aa Zgi
*

*)(  
 ,   (69) 

 
it is possible to write: 
 

 ba
ab VVKK  

  a
aT

i

2
  a

a V a
a V .(70)

 
 

The exterior derivatives of the matter fields zi and i  are the analogue of the curvatures abR , aT  e  of the supergravity fields. 

More precisely, it is useful to define as “curvature” of   the covariant derivative i , which is covariant with respect to 
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Lorentz, Kähler transformations, and to coordinate transformations on Kähler manifold. In general, all covariant derivatives of 
fermions contain the Kähler connection, for being covariant under Kähler transformations.  
Therefore the set of curvatures of supergravity and of Wess-Zuminomultiplets are given by: 
 

aR  D 
   aa iV ;   (D aV b

aba VdV  );(71) 

 

 cba
c

abab dR   Rab;(72) 

 

   ;   (73) 

 

ii
def

i dzdzzR )( ;   (74) 

 

ii
def

iR  )( ,(75) 

 
where: 
 

   d    Q
i

ab
ab

24

1
; (76) 

 

ii d  ikji
ab

ab Q
i

dz
kj

i


24

1










 .(77) 

 
The Bianchi identities of supergravity added to Wess-Zumino are given by (Di Sia, 2014; Castellaniet al.,1991; Freedman and Van 
Proeyen, 2012; Nastase, 2012): 
 

D 0 



  aa

b
aba iiVRR ;(78) 

 

D 0abR ;(79) 

 

 0
24

1
   K

i
R ab

ab ;  (80) 

 

0izdd ;   (81) 

 

i  ii
ab

ab K
i

R 
24

1
0

*

*  kjm
k

i
jm zdzdR  .   (82) 

 
 

6. ON KÄHLER GEOMETRY FOR COUPLING OF VECTOR MULTIPLET TO PURE D=4, N=1 
SUPERGRAVITY COUPLED WITH SCALAR MULTIPLETS 
 
The scalar multiplets contain quarks, leptons and Higgs particles together with their superpartners. The gauge bosons, conversely, 
belong to vector multiplets (1, 1/2). Similarly to the ordinary Yang-Mills theory, the role of vector multiplets is to “make local” 
some groups of global symmetries of the matter Lagrangian. The global bosonic symmetries are in bijective correspondence with 

the isometries of the Kähler metric ),(* zzg
ij

, which  satisfy the additional requirement of maintaining invariant the Kähler 

potential ),( zzG .  

If indeed )()( zK i
 is a basis of holomorphic Killing vectors for the metric ),(* zzg

ij
, the holomorphicity means: 

 

0)(0)( )()(
*

*  zKzK i
j

i
j  ;   (83) 

 
*

)()( )(
*


ii KK  .   (84) 
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The )()( zK i
  vectors are the generators of transformations of infinitesimal holomorphic coordinates: 

 

)()( zKz ii


  ,(85) 

 

which maintain invariant the metric ),(* zzg
ij

. 

The vector fields: 
 

i
iKK 


)()(  ,   (86) 

 
associated to such Killing vectors close a Lie algebra: 
 

  )()()( , 


 KhKK


 ,(87) 

 
and vectors may be normalized in such a way that the structure constants are fully antisymmetric: 
 

 


 hhh  .(88) 

 

As the metric ),(* zzg
ij

 is the derivative of other fundamental objects, so the Killing vectors in a Kähler manifold are the 

derivatives of a convenient prepotential: 
 

*

*

)( j
iji giK 


 P  () ;   P  *() = P  () .   (89) 

 

We can therefore define a Killing vector finding  a  real  function  P  ()  such that *

*

j
ijgi  P  ()  is holomorphic.  

The infinitesimal transformation of holomorphic coordinates extended to fermions is an invariance of the part of Langrangian, 
which survive to the limit “ 0e ”, because under an isometry the Kähler potential is not invariant, but changes for a Kähler 

transformation 
 

)(Re),(),( zfzzGzzzzG 
  ,  (90) 

 
which can be compensated in this part of the Lagrangian by another Kähler transformation. The form of the isometric 
transformation on fermions is therefore: 
 

j
i   iji zf

i
zK  


 )(

2
)()(  ; (91) 

 

   
 )(Im

2
zf

i
.   (92) 

 
Even the part of the Lagrangian proportional to “e” (which contains the mass term of gravitino, the “non-diagonal” mass term, the 

mass term of spin 1/2 and the potential term of the scalar field) is not invariant under the isometry )()( zK i
 , unless the 

compensating Kähler transformation is zero: 
 

0)( zf .(93) 

 

We therefore consider holomorphic vectors )()( zK i
  that satisfy the most restrictive condition of maintaining invariant the 

Kähler potential: 
 

0)()(
*

*  
i

i
i

i KGKG .   (94) 

 
In particle physics applications it is possible to have the situation in which the Killing vector is a linear function in z: 
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j
j

iij
j

ii zTzzTK )()()( 


   .  (95) 

 
In this case, Eq. (91) becomes: 
 

 i j
j

iT  )( . (96) 

 
In the case of linear isometries, the prepotential of Killing vectors is expressed in terms of the first derivative of the Kähler 
potential (Di Sia, 2014; Castellaniet al.,1991; Castellani et al.,1990; Freedman and Van Proeyen, 2012; Nastase, 2012): 
 

P  () = Gi i j
j

iT  )( .(97) 

 
 

7. CONCLUSION 
 
In this paper it has been underlined the positive contribution of Kähler manifolds in the process of building supergravity theories. 
Supersymmetry imposes particular constraints on the geometry of the scalar manifold M , on which the scalar fields are 

considered as coordinates. In D=4, N=1 theories the scalar manifold for chiral multipletsM is restricted to be a Kähler manifold. 

The choice of the multiplet, the number N of supersymmetries and the space-time dimension D is reflected in geometric properties 
of the manifoldM . Multi-structured manifolds are endowed with one or more tensor fields, linked by appropriate conditions of 

mutual compatibility. Kähler manifolds constitute a significant example, with Riemannian and complex structures coupled in 
order to obtain a symplectic structure. 
From the work of Gell-Mann, Lévy and Zumino it has been clearly understood the importance of Kähler manifolds as target space 
requirement for having models with supersymmetry group. Later it has been found that the extension of supersymmetry to higher 
numbers of generators requires additional geometric structures.The general geometric form of supergravity coupled to both scalar 
and vector multiplets before the supersymmetry breaking, i.e. the theory of heterotic string, of which the N=1 supergravity is the 
effective theory in 4 dimensions, is in agreement with the results obtained by means of the superconformal tensor calculus within 
the components approach (Di Sia, 2014; Castellaniet al.,1991; Castellani et al.,1990; Di Sia, 2013; Di Sia, 2015). 
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