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INTRODUCTION 
 
Divergence measures are basically measures of distance between two probability distributions or compare two probability 
distributions, i.e., divergence measures are directly propositional to the distance between two probability distributions. It
that any divergence measure must take its minimum value zero when probability distributions are equal and maximum when 
probability distributions are perpendicular to each other. So, any divergence measure must increase as probability distributions 
move apart.  
 
Divergence measures have been demonstrated very useful in a variety of disciplines such as economics and political sci
(Theil, 1972 and Theil, 1967), biology 
approximation of probability distributions (Chow and Lin, 1968
Shepp, 1967 and Kailath, 1967), pattern recognition 
segmentation (Nielsen and Boltz, 2010), 3D image segmentation and word alignment 
classification for medical diagnosis (Santos-Rodriguez 
 
Also we can use divergences in fuzzy mathematics as fuzzy directed divergences and fuzzy entropies
Hooda, 2004 and Jha and Mishra, 2012), which are very useful to find the amount of average ambiguity or difficulty in making a 
decision whether an element belongs to a set or not. Fuzzy information measures have recently found applications to fuzzy air
control, fuzzy traffic control, engineering, medicines, computer science, management and decision making etc. 
 
Without essential loss of insight, we have restricted ourselves to discrete probability distributions, so let 
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ABSTRACT 

Many relations have been obtained among several divergences by using several information 
inequalities. In this work, we also relate the Relative Jensen
discrimination, Relative Arithmetic- Geometric divergence, Relative J
discrimination to the Chi- square divergence and Varitional distance independently in a specific 
interval by using two different new information inequalities on new generalized f
together with numerical verification by taking two discrete probability distributions: Binomial and 
Poisson. These new information inequalities are derived by using Ostrowski’s inequalities. 
Application to the Mutual information and numerical approximation are done as well.

This is an open access article distributed under the Creative Commons Att
use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Divergence measures are basically measures of distance between two probability distributions or compare two probability 
distributions, i.e., divergence measures are directly propositional to the distance between two probability distributions. It
that any divergence measure must take its minimum value zero when probability distributions are equal and maximum when 

bility distributions are perpendicular to each other. So, any divergence measure must increase as probability distributions 

Divergence measures have been demonstrated very useful in a variety of disciplines such as economics and political sci
, biology (Pielou, 1975), analysis of contingency tables (Gokhale and Kullback, 1978)

(Chow and Lin, 1968 and Kazakos and Cotsidas, 1980)
, pattern recognition (Bassat, 1978; Chen, 1973 and Jones and Byrne, 1990)

, 3D image segmentation and word alignment (Taskar 
Rodriguez et al., 2009), magnetic resonance image analysis 

Also we can use divergences in fuzzy mathematics as fuzzy directed divergences and fuzzy entropies
, which are very useful to find the amount of average ambiguity or difficulty in making a 

decision whether an element belongs to a set or not. Fuzzy information measures have recently found applications to fuzzy air
ntrol, engineering, medicines, computer science, management and decision making etc. 

Without essential loss of insight, we have restricted ourselves to discrete probability distributions, so let 
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Many relations have been obtained among several divergences by using several information 
In this work, we also relate the Relative Jensen- Shannon divergence, Triangular 

Geometric divergence, Relative J- divergence, and Hellinger 
square divergence and Varitional distance independently in a specific 

interval by using two different new information inequalities on new generalized f- divergence, 
taking two discrete probability distributions: Binomial and 

Poisson. These new information inequalities are derived by using Ostrowski’s inequalities. 
Application to the Mutual information and numerical approximation are done as well. 
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Divergence measures are basically measures of distance between two probability distributions or compare two probability 
distributions, i.e., divergence measures are directly propositional to the distance between two probability distributions. It means 
that any divergence measure must take its minimum value zero when probability distributions are equal and maximum when 

bility distributions are perpendicular to each other. So, any divergence measure must increase as probability distributions 

Divergence measures have been demonstrated very useful in a variety of disciplines such as economics and political science 
(Gokhale and Kullback, 1978), 

), signal processing (Kadota and 
(Bassat, 1978; Chen, 1973 and Jones and Byrne, 1990), color image 

(Taskar et al., 2006), cost- sensitive 
, magnetic resonance image analysis (Vemuri et al., 2010) etc.  

Also we can use divergences in fuzzy mathematics as fuzzy directed divergences and fuzzy entropies (Bajaj and Hooda, 2010; 
, which are very useful to find the amount of average ambiguity or difficulty in making a 

decision whether an element belongs to a set or not. Fuzzy information measures have recently found applications to fuzzy aircraft 
ntrol, engineering, medicines, computer science, management and decision making etc.   

Without essential loss of insight, we have restricted ourselves to discrete probability distributions, so let 

te discrete probability distributions.  
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The restriction here to discrete distributions is only for convenience, similar results hold for continuous distributions. If we take

0ip   for some 1, 2, 3,...,i n , then we have to suppose that  
0

0 0 0 0
0

f f
 

  
 

. 

 

Some generalized functional information divergence measures had been introduced, characterized and applied in variety of fields, 

such as: Csiszar’s f - divergence (Csiszar, 1974 and Csiszar, 1967), Bregman’s f - divergence (Bregman, 1967), Burbea- Rao’s 

f - divergence (Burbea and Rao, 1982), Renyi’s like f - divergence (Renyi, 1961) etc. Similarly, Jain and Saraswat (Jain and 

Saraswat, 2012) defined new generalized f - divergence measure, which is given by 
 

 
1

,
2

n
i i

f i
i i

p q
S P Q q f

q

 
  

 
 ,                                                                                    (1.1) 

 

where  : 0,f R  (set of real no.) is real, continuous, and convex function and 

   1 2 3 1 2 3, , ..., , , , ...,n n nP p p p p Q q q q q   , where ip  and iq  are probability mass functions. The advantage of 

these generalized divergences is that many divergence measures can be obtained from these generalized f - divergences by 

suitably defining the function f . Some resultant divergences by  ,fS P Q , are as follows (Properties of  ,fS P Q can be seen 

in literature (Jain and Saraswat, 2012). 
 

a. If we take   logf t t   in (1.1), we obtain 
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2
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q
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 ,                                                               (1.2) 

 

where  ,F Q P is called adjoint of the Relative JS divergence  ,F P Q ( Sibson, 1969). 

 

b. If we take  
 

2
1t

f t
t


  in (1.1), we obtain 

 

 
 

 
2

1

1 1
, ,

2 2

n
i i

f
i i i

p q
S P Q P Q

p q


  


 ,                                                                 (1.3) 

 

where  ,P Q is called the Triangular discrimination (Dacunha- Castelle, 1978).  
 

c. If we take   logf t t t  in (1.1), we obtain 

 

   
1

, log ,
2 2

n
i i i i

f
i i

p q p q
S P Q G Q P

q

   
   

   
 ,                                                  (1.4) 

 

where  ,G Q P is called adjoint of the Relative AG divergence  ,G P Q ( Taneja, 1995). 
 

d. If we take    1 logf t t t   in (1.1), we obtain 

 

     
1

1 1
, log ,

2 2 2

n
i i

f i i R
i i

p q
S P Q p q J P Q

q

 
   

 
 ,                                           (1.5) 
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where  ,RJ P Q is called the Relative J- divergence (Dragomir et al., 2001).  

 

e. If we take   1f t t   in (1.1), we obtain 

 

 
2

*

1

1
, 1 , ,

2 2 2 2

n
i i

f i
i

p q P Q P Q
S P Q q G Q h Q
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 ,               (1.6) 

 

where  *

1

,
n

i i
i

G P Q p q


 and  
 

2

1

,
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n
i i

i

p q
h P Q




 are called the Geometric divergence and Hellinger 

discrimination (Kolmogorov’s divergence) (Hellinger, 1909), respectively.  
 

f. If we take    
2

1f t t   in (1.1), we obtain 
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q
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
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where  2 ,P Q is called the Chi- Square divergence (Pearson div. measure) (Pearson, 1900).  

 

g. If we take   1f t t   in (1.1), we obtain 

 

   
1

1 1
, ,

2 2

n

f i i
i

S P Q p q V P Q


   ,                                                                      (1.8) 

 

where  ,V P Q is called the Variational distance ( 1l  distance) (Kolmogorov, 1963). 

 

h. Particularly, by taking      
1

2 1 log 2 1 , ,
2

f t t t t
 

     
 

in (1.1), we obtain 
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p
S P Q p K P Q

q
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 
 ,                                                                   (1.9) 

 

where  ,K P Q is called the Relative entropy (Kullback- Leibler distance) (Kullback and Leibler, 1951). 

  
Similarly, we can obtain many divergences by using linear convex functions. Since these divergences are not worthful in practice, 
therefore we can skip them. We can see that, divergence (1.3) and (1.8) are symmetric while (1.2), (1.4), (1.5) to (1.7), and (1.9) 
are non- symmetric with respect to probability distributions. Now, there are two generalized means which are being used in this 
paper for calculations only. These are as follows. 
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 
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b b a
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b
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

        



.                                                                   (1.11) 

 
Means (1.10) and (1.11) are called p - Logarithmic power mean and Identric mean respectively.  

  
New information inequalities 
 

In this section, we introduce two new information inequalities (Theorems 2.1 and 2.2) on  ,fS P Q in terms of  2 ,P Q and 

 ,V P Q . Such inequalities are for instance needed in order to calculate the relative efficiency of two divergences.  

 
Firstly, following lemmas 2.1 (Dragomir et al., 2001) and 2.2 (Dragomir, 1999) are very important to introduce new information 
inequalities. These are as follows. 
 

Lemma 2.1 Let  : ,f a b R R  be an absolutely continuous function in  ,a b with a b and  : ,f a b R  is 

essentially bounded or  ,f L a b
 , i.e.,  
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t a b

f ess f t
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    , then we have 
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1 1 2
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  
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   

    

 ,                                 (2.1) 

for all  , ,x t a b . 

 

Lemma 2.2 Let  : ,f a b R R  be a differentiable function and is of bounded variation on  ,a b , i.e., 

 

   
bb

a
a

A f f t dt   , then we have 

      
2 2

b b

a
a

b a a b
f t dt f x b a x A f

   
     

 
 ,                                              (2.2) 

 

for all  , ,x t a b . 

 
Now, we will obtain two new information inequalities by using above two Ostrowski’s inequalities (2.1) and (2.2). 
 

Theorem 2.1 Let  : ,f R R    be an absolutely continuous function in  ,  with 0 1 ,          and

 : ,f R   is essentially bounded or  ,f L  
 , i.e.,  

 

 
 

,

sup
t

f ess f t
 




    ,                                                                                     (2.3) 

 

for all  ,t   . 
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If , nP Q is such that
1

0 1, 2,3,...,
2 2

i i
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q
 


       , then we have the following inequality 
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where  ,fS P Q and  2 ,P Q are given by (1.1) and (1.7) respectively.   

 

Proof: Put ,a b   , and
2
i i

i

p q
x

q


 in inequality (2.1), multiply by iq and then sum over all 1, 2,...i n , we get 
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Hence prove the inequality (2.4). 
 

Theorem 2.2 Let  : ,f R R    be a differentiable function and is of bounded variation on  ,  with

0 1 ,         , i.e., 
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for all  ,t   . 
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where  ,fS P Q and  ,V P Q are given by (1.1) and (1.8) respectively.   
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Proof: Put ,a b   , and
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2 2 2 2

n n n
i i i i

i i i
i i ii i

p q p q
q f f t dt q q A f

q q

 




 

     

    
     

    
   , i.e., 

 
 

 
 

 
1

1 1 1
, 1 1

2 2 2

n
i i

f i
i i

p q
S P Q f t dt q A f

q

 




 

    

   
       

    
 , i.e., 

 
 

1 1

1 1
1 1

2 2 2

n n
i i

i i
i ii

p q
q q A f

q





 

   

    
      

     
  , i.e., 

 
   

1 1 1
, 1

2 2 2
V P Q A f





 

 

   
     

   
, i.e., 

 
   

1 1
2 ,

2
V P Q A f



 

 
  

 
, 1

2 2

      
  

 
 . 

 
Hence prove the inequality (2.6). 
 
Application of obtained new information inequalities 
 
In this section, we obtain relations of different divergences in terms of the Chi- square divergence and Variational distance 
independently by using new inequalities (2.4) and (2.6). We are considering only convex functions, the inequalities hold good for 
concave functions as well. Means (1.10) and (1.11) are taking for simplification and calculations.  
 

Proposition 3.1 Let  ,F P Q ,  2 ,P Q , and  ,V P Q  be defined as in (1.2), (1.7), and (1.8) respectively. For , nP Q , 

we have 
 

   
 

 
 2

2

1
, log , 2 2 ,

4
F Q P I P Q

 
  

  

 
    

  
.                              (3.1) 

 

       1, log , 2 , ,F P Q I V P Q L            .                                     (3.2) 

 
Proof: Let us consider  

 

     
1

log , , 1 0,f t t t R f f t
t


     

 
and   2

1
f t

t
  . 

 

Since   0 0tf t   and  1 0f  , so  f t  is convex and normalized function respectively. 

 

Now put  f t in (1.1) and put  f t in (2.3) and (2.5), we get the followings 

 

   
1

2
, log ,

n
i

f i
i i i

q
S P Q q F Q P

p q

 
  

 
 .                                                               (3.3) 

 

   
1 1

log logA f f t dt dt dt
t t

  


  

         .                                                 (3.4) 
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Now, let    
1 1

g t f t
t t

    , and   2

1
0g t

t
    .  

 

It is clear that  g t is always decreasing in (0, ∞), so 

 

 
 

 
   

, ,

1
sup sup

t t

f f t g t g
   




 

     .                                                          (3.5) 

 
The results (3.1) and (3.2) are obtained by using (3.3), (3.4), and (3.5) in (2.4) and (2.6) respectively. 
 

Proposition 3.2 Let  ,P Q ,  2 ,P Q , and  ,V P Q  be defined as in (1.3), (1.7), and (1.8) respectively. For , nP Q , 

we have 
 

a. If 0 1  , then 
 

      1 1, 2 , , 2P Q L L        

 
 

 
2 2 2 2

2

2 2 2 2 2

1
2 , 2

4
P Q

     


    

     
      

    
,                                (3.6) 

 

b. If 1  , then 
 

      1 1, 2 , , 2P Q L L      
 

 

 
 

    2

2 2

1 11
2 ,

2
P Q

   


 

    
  

  
,                                                  (3.7) 

 
and 
 

      1 1, 2 , , 2P Q L L        

 

 
   1

1
2 , 2 , 4V P Q L

 
 

  

   
         

.                                                  (3.8) 

 
Proof: Let us consider  

 

 
 

   
2 2

2

1 1
, , 1 0,

t t
f t t R f f t

t t


    
 
and   3

2
f t

t
  . 

 

Since   0 0tf t   and  1 0f  , so  f t  is convex and normalized function respectively. 

Now put  f t in (1.1) and put  f t in (2.3) and (2.5), we get the followings 

 

 
 

 
2

1

1 1
, ,

2 2

n
i i

f
i i i

p q
S P Q P Q

p q


  


 .                                                                 (3.9) 
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   
1 2 2

2 2

1

1 1
4

t t
A f f t dt

t t

 


 

 
 



  
         .                                      (3.10) 

 

Now, let    
   

   

   

2

2

2

1 1
, 0 1

1 1

1 1
,1

t t
t

t t t
g t f t

t t t
t

t

 
      

    


, and 

 
3

3

2
0, 0 1

2
0, 1

t
t

g t

t
t


   

  
    


.  

 

It is clear that   0g t  in  0,1  and 0 in  1, , i.e.,  g t is decreasing in  0,1 and increasing in  1, , so 

 

 
 

 
 

, ,

sup sup
t t

f f t g t
   


 

    

 
   

       

 

max , , 0 1
2

, 1

f f f f
f f

f

   
  

 

      
          


 

, i.e.,  

 

   

2 2 2 2

2 2 2 2

2

1
2 , 0 1

2

1 1
, 1

   


   

 




   
     

   
 




.                                                              (3.11)
 

 

The results (3.6), (3.7), and (3.8) are obtained by using (3.9), (3.10), and (3.11) in (2.4) and (2.6) respectively. 
 

Proposition 3.3 Let  ,G P Q ,  2 ,P Q , and  ,V P Q  be defined as in (1.4), (1.7), and (1.8) respectively. For , nP Q , 

we have 
 

a. If 
1

0
e

  , then 

 

   
 

 

2 2

1

log log
2 , ,G Q P L

   
 

 


 


 

 
 

 2

2

1
2 , log 1 log

2
P Q

  
 

 

   
      

    
,                               (3.12) 

 

b. If 
1

1
e

  , then 

   
 

 

2 2

1

log log
2 , ,G Q P L

   
 

 


 


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   
 

 2

2

log 1
2 ,

2

e
P Q

  


 

 
  

  
,                                                         (3.13) 

 
and 
 

   
 

 

2 2

1

log log
2 , ,G P Q L

   
 

 


 


 

 
 

1 2
2 , log logV P Q

e
   

 

   
      

   
.                                                  (3.14) 

 
Proof: Let us consider  
 

     log , , 1 0, 1 logf t t t t R f f t t
    

 
and  

1
f t

t
  . 

Since   0 0tf t   and  1 0f  , so  f t  is convex and normalized function respectively. 

Now put  f t in (1.1) and put  f t in (2.3) and (2.5), we get the followings 

 

   
1

, log ,
2 2

n
i i i i

f
i i

p q p q
S P Q G Q P

q

   
   

   
 .                                               (3.15) 

 

       
1/

1/

2
1 log 1 log log log

e

e

A f f t dt t dt t dt
e

 


 

              .       (316) 

Now, let    

1
1 log , 0

1 log
1

1 log ,

t t
e

g t f t t

t t
e


       

    


,  

and   

1 1
0, 0

1 1
0,

t
t e

g t

t
t e


   

  
    


.  

 

It is clear that   0g t  in
1

0,
e

 
 
 

 and 0 in
1

,
e

 
 

 
, i.e.,  g t is decreasing in

1
0,

e

 
 
 

and increasing in
1

,
e

 
 

 
, so 

 
 

 
 

 
, ,

sup sup
t t

f f t g t
   


 

    

 

   

 

1
max , log 1 log , 0

1
1 log , 1

f f
e

f
e


   



  

                
     

.                        (3.17) 

 
The results (3.12), (3.13), and (3.14) are obtained by using (3.15), (3.16), and (3.17) in (2.4) and (2.6) respectively. 
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Proposition 3.4 Let  ,RJ P Q ,  2 ,P Q , and  ,V P Q  be defined as in (1.5), (1.7), and (1.8) respectively. For , nP Q , 

we have 
 

a. If 0 1  , then 
 

      
 

 

2 2

1

log log
, 2 log , , 4RJ P Q I L

   
   

 


   


 

 
 

 
 2

2

1
2 , log log

2 2 2
P Q e

      
 

   

     
       

    
,        (3.18) 

 

b. If 1  , then 

 

     
 

 

2 2

1

log log
, 2 log , , 4RJ P Q I L

   
   

 


   


 

 
 

 2

2

1 1
2 , log

2
P Q e

 
 

 

   
     

    
,                                                 (3.19) 

 
and  
 

     
 

 

2 2

1

log log
, 2 log , , 4RJ P Q I L

   
   

 


   


 

 
   

1
2 , log log log logV P Q      

 

 
     

 
.                                 (3.20) 

 
 
Proof: Let us consider  
 

       
1

1 log , , 1 0, log
t

f t t t t R f f t t
t



     
 
and   2

1t
f t

t

  . 

Since   0 0tf t   and  1 0f  , so  f t  is convex and normalized function respectively. 

Now put  f t in (1.1) and put  f t in (2.3) and (2.5), we get the followings 

 

     
1

1 1
, log ,

2 2 2

n
i i

f i i R
i i

p q
S P Q p q J P Q

q

 
   

 
 .                                         (3.21) 

   
1

1

1 1
1 log 1 logA f f t dt t dt t dt

t t

 


 

             
   

  
 

log log log log         .                                                                        (3.22) 

 

Now, let    

1
1 log , 0 1

1
log

1
1 log , 1

t t
t t

g t f t t
t

t t
t


         

     


, 
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and  
2

2

1
0, 0 1

1
0, 1

t
t

t
g t

t
t

t

  
    

  
  

        

.  

 

It is clear that   0g t  in  0,1  and 0 in  1, , i.e.,  g t is decreasing in  0,1 and increasing in  1, , so 

 

 
 

 
 

, ,

sup sup
t t

f f t g t
   


 

    

   

 

max , log log , 0 1
2 2

1
log , 1

f f e

f e

    
   

  

  


                  
      
 

.  (3.23) 

 
The results (3.18), (3.19), and (3.20) are obtained by using (3.21), (3.22), and (3.23) in (2.4) and (2.6) respectively. 
 

Proposition 3.5 Let  ,h P Q ,  2 ,P Q , and  ,V P Q  be defined as in (1.6), (1.7), and (1.8) respectively. For , nP Q , we 

have 
 

 
 

 
 2

1/2 2

1
, , 1 2 ,

2 8

P Q
h Q L P Q

 
  

  

  
     

    
.                       (3.24) 

 

       1/2 1/2

1 1
, , 1 2 , ,

2 2 2

P Q
h Q L L V P Q     

   
          

.          (3.25) 

 
Proof: Let us consider  
 

     
1

1 , , 1 0,
2

f t t t R f f t
t


     

 
and   3/2

1

4
f t

t
  . 

 

Since   0 0tf t   and  1 0f  , so  f t  is convex and normalized function respectively. 

Now put  f t in (1.1) and put  f t in (2.3) and (2.5), we get the followings 

 

 
   

1 1 1

1
, 1 1 2 2

2 2 2 2

n n n
i i i i i ii i

f i
i i ii

q p q q p qp q
S P Q q

q  

    
             
    

 
2

1 1 1

1 1
2 ,

2 2 2 2 2

n n n
i i i i

i i i i i
i i i

p q p q P Q
q q p q q h Q

  

      
                 

   .         (3.26) 

    
1 1 1 1

2 2
A f f t dt dt dt

t t

  


  

         .                                       (3.27) 

Now, let    
1 1 1

2 2
g t f t

t t
    , and   3/2

1
0

4
g t

t
    .  
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It is clear that  g t is always decreasing in (0, ∞), so 

 

 
 

 
   

, ,

1
sup sup

2t t

f f t g t g
   




 

     .                                                   (3.28) 

 
The results (3.24) and (3.25) are obtained by using (3.26), (3.27), and (3.28) in (2.4) and (2.6) respectively. 
 
Mutual information 
 
Mutual information (Shannon, 1948) is a measure of amount of information that one random variable contains about another or 
amount of information conveyed about one random variable by another. 
 

Let X andY be two discrete random variables with a joint probability mass function  ,i j ijp x y p with

1, 2,... ; 1, 2,...i m j n  and marginal probability mass functions    
1

, , 1,2,...
n

i i j
j

p x p x y i m


  and

   
1

, , 1, 2,...
m

j i j
i

p y p x y j n


  , where ,i jx X y Y  , then Mutual information  ,I X Y is defined by 

 

   
 

   
 

 
      1 1 , ,

, ,
, , log , log

m n
i j

i j
i j x y X Yi j

p x y p x y
I X Y p x y p x y

p x p yp x p y  

   .       (4.1) 

 

Since  ,I X Y is symmetric in X , Y therefore it can also be written as 

  

       , ,
X Y

I X Y I Y X H X H H Y H
Y X

   
       

   
,                                       (4.2) 

where  
 

         
1 1 1 1

log , log ,
m m n n

i i i j i j
i i j j

H X p x p x p x y p x y
   

 
     

 
                          (4.3) 

 
is known as Marginal entropy (Shannon, 1948) and 

 

 
1 1

, log
m n

i
i j

i j j

xX
H p x y p

Y y 

  
         

                                                                      (4.4) 

 
is known as Conditional entropy (Shannon, 1948). 
 

By viewing  ,K P Q (Relative entropy (1.9)), we can say that the Mutual information is nothing but a Relative entropy between 

joint distribution  ,p x y and product of marginal distributions  p x and  p y after replacing  p x and  q x by  ,p x y and

   p x p y  respectively, in (1.9). So  ,I X Y can also be written as 

 

          
 

      , ,

,
, , , , log

x y X Y

p x y
I X Y K p x y p x p y p x y

p x p y

 
   

 
 .                 (4.5) 

 
Similarly, we can define the Mutual information in following manners as well. 
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In  2 ,P Q manner:  
     

      
2

2

, ,

,
,

x y X Y

p x y p x p y
I X Y

p x p y


    ,                                  (4.6) 

 

In  ,V P Q manner:        
   , ,

, ,V
x y X Y

I X Y p x y p x p y


  ,                                         (4.7) 

 

where  2 ,P Q and  ,V P Q are given by (1.7) and (1.8) respectively. 

 

Proposition 4.1 For
     

   
   

,1
, ,

2 2

p x y p x p y
x y X Y

p x p y
 


       , we get the following new information 

inequalities in Mutual information sense 

 

     
 

 

     
 

 

2

2

2

2

1 1 1 1
, , , 2 , , 1

2 2

1 1 1
, , , 2 , , 1 1

2

I X Y A B I X Y
e

I X Y A C I X Y
e





    
 

    
 

    
         

     


   
        

    

         (4.8) 

 
and 
 

   
   

 
 

2 1 log 1 1
, , 2 ,

2
VI X Y A I X Y

 
 

 

   
   

 
,                        (4.9) 

 
where 
 

 
 

  

  
 

2

2

2 1

12 1

2 11 1
, log 2 , 1

2 2 2 1
A L






   

  





       
     

,                               (4.10) 

 

 ,B   
 

  
2 1

log log 2 1 2 1 2
2 2 1

  
 



    
       

,                              (4.11) 

 

 
 

 , 1 log 2 1
2

C
 

  


     ,                                                                     (4.12) 

 

and      2, , , , ,VI X Y I X Y I X Y


are given by (4.5), (4.6), and (4.7) respectively. 

 
Proof: Let 
 

           
1

2 1 log 2 1 , , , 1 0, 2 1 log 2 1
2

f t t t t f f t t
              
 

 and 

 
4

0
2 1

f t
t

  


.                                                                                        
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Since  
1

0
2

f t t    and  1 0f  , so  f t  is convex and normalized function respectively. Now put  f t in (1.1) and 

put  f t in (2.3) and (2.5) then after replacing ,i ip q 1, 2,3,...i n  by  ,p x y ,    p x p y    , ,x y X Y  , we get 

the followings 
 

   
 

      
 

, ,

,
, , log ,f

x y X Y

p x y
S P Q p x y I X Y

p x p y

 
  

 
 .                                     (4.13) 

 

         
1/2

2 1 log 2 1 2 1 log 2 1A f f t dt t dt
 




           .                        (4.14)

 

Now, let      
 

 

1 1 1
2 1 log 2 1 , 1

2 2
2 1 log 2 1

1 1
2 1 log 2 1 , 1

2

t t
e

g t f t t

t t
e

  
          

       
             

, 

and  
 

 

4 1 1 1
0, 1

2 1 2 2

4 1 1
0, 1

2 1 2

t
t e

g t

t
t e

  
        

  
          

.  

 

It is clear that   0g t  in
1 1 1

, 1
2 2 e

  
  

  
 and 0 in

1 1
1 ,

2 e

  
   

  
, i.e.,  g t is decreasing in

1 1 1
, 1

2 2 e

  
  

  
and 

increasing in
1 1

1 ,
2 e

  
   

  
, so 

 
 

 
 

   

 
, ,

1 1 1
max , , 1

2 2
sup sup

1 1
, 1 1

2
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f f
e

f f t g t

f
e

   

  

 


 

             
    

        

 

 

  

 

2 1 1 1 1
2 log log 2 1 2 1 2 , 1

2 1 2 2

1 1
2 1 log 2 1 , 1 1

2

e

e


  



 

      
                 

            

.                        (4.15) 

 

The results (4.8) and (4.9) are obtained by using (4.6), (4.7), (4.13), (4.14), (4.15) in (2.4) and (2.6) after replacing ,i ip q by

     , ,p x y p x p y respectively. 

 

Numerical approximation 
 

If ip and iq are very close to each other and    ,i i i ip p q q   , i.e., 

 

   
 

 1 , 0,1 1,2,3...,
2

i i

i

p q
i n

q

 
 




     , with 
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1   and 1   , then from (3.1) and (3.2) we obtain the followings  

      
 

   2

2

1
, 2 log 1 ,1 2 ,

2 1 4
F Q P I P Q


      

 

 
              

.           (5.1) 

            1, 2 log 1 ,1 2 , 1 ,1F P Q I V P Q L        
                .       (5.2) 

 

We conclude from (5.1) and (5.2) that adjoint of the Relative JS divergence and Relative JS divergence  ,F P Q respectively can 

be approximated by  2 log 1 ,1I       and the error of the approximation is less than and equal to 

 

 
   2

2

1
2 ,

2 1 4
P Q


  

 

 
      

 and  

     12 , 1 ,1V P Q L    
        
 

respectively, for all  0,1  . 

In a similar manner, from (4.8) and (4.9), we can say that the Mutual information is approximated by  1 ,1A    and error of 

approximation is less than and equal to 
 

     22

1
1 ,1 2 ,

4
B I X Y


   
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 
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for 0 1  , 

     22
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1 ,1 2 ,

4
C I X Y


   



 
       

for 
1

0
2

e

e



  , 

and 
 

   
   

2 1 log 2 1 1
2 ,

2 2
VI X Y

 
 



   
     

for 0 1  ,  

respectively. 
 
Similarly, we can approximate and can find the error of the approximation for other results as well. We leave to the readers to 
verify these. 
 
Numerical verification 
 

In this section, we give two examples for calculating the divergences    2, , ,P Q P Q ,  ,V P Q and verify the inequalities 

(3.6) and (3.8). 
 

Example 6.1 Let P be the binomial probability distribution with parameters  10, 0.5n p  and Q its approximated Poisson 

probability distribution with parameter  5np   for the random variable X , then we have 
 

Table 1.  10, 0.5, 0.5n p q  
 

 

ix  0 1 2 3 4 5 6 7 8 9 10 

 i ip x p   .000976 .00976 .043 .117 .205 .246 .205 .117 .043 .00976 .000976 

 i iq x q   .00673 .033 .084 .140 .175 .175 .146 .104 .065 .036 .018 

2
i i

i

p q

q


  .573 .648 .757 .918 1.086 1.203 1.202 1.063 .831 .636 .527 
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By using Table 1, we get the followings. 
 

   0.527 1.203
2
i i

i

p q

q
 


    .                                                                     (6.1) 

 

 
 

2
11

1

, i i

i i i

p q
P Q

p q


 


  0.0917.                                                                            (6.2) 

 

 
 

2
11

2

1

, i i

i i

p q
P Q

q





  0.1471.                                                                          (6.3) 

 

 
11

1

, i i
i

V P Q p q


   0.3312.                                                                                (6.4) 

 

Put the approximated numerical values from (6.1) to (6.4) in (3.6) and (3.8) and verify them for 0.5p  . We omit the details. 

 

Example 6.2 Let P be the binomial probability distribution with parameters  10, 0.7n p  and Q its approximated Poisson 

probability distribution with parameter  7np   for the random variable X , then we have 

 

Table 2.  10, 0.7, 0.3n p q  
 

 

ix  0 1 2 3 4 5 6 7 8 9 10 

 i ip x p   
.0000059 .000137 .00144 .009 .036 .102 .20 .266 .233 .121 .0282 

 i iq x q   
.000911 .00638 .022 .052 .091 .177 .199 .149 .130 .101 .0709 

2
i i

i

p q

q


  

.503 .510 .532 .586 .697 .788 1.002 1.392 1.396 1.099 .698 

 
By using Table 2, we get the followings. 
 

   0.503 1.396
2
i i

i

p q

q
 


    .                                                                     (6.5) 

 

 
 

2
11

1

, i i

i i i

p q
P Q

p q


 


  0.1812.                                                                            (6.6) 

 

 
 

2
11

2

1

, i i

i i

p q
P Q

q





  0.3298.                                                                          (6.7) 

 

 
11

1

, i i
i

V P Q p q


    0.4844.                                                                             (6.8)    

  

Put the approximated numerical values from (6.5) to (6.8) in (3.6) and (3.8) and verify them for 0.7p  . We omit the details. 

Similarly, we can verify the other inequalities (3.1), (3.2), (3.13), (3.14), (3.18), (3.20), (3.24), and (3.25). 
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CONCLUSION AND DISCUSSION 
 

In this work, we presented new information inequalities on  ,fS P Q . Further, we relate various well known divergences to the 

Chi- square divergence and Variational distance separately in an interval  , , 0 1       with  as an 

application of new inequalities. These relations have been verified numerically by taking two discrete distributions: Binomial and 
Poisson. A numerical approximation has been done as well, which shows that we can approximate a particular divergence and can 
find the error of approximation. Lastly, a very important application to the Mutual information has been discussed, which tells us 

how far the joint distribution is from its independency, i.e.,      2, 0 , ,VI X Y I X Y I X Y


   if distributions are 

independent to each other. 
 
We found in articles (Bhatia and Singh, 2013 and Jain and Chhabra, 2014) that square root of some particular divergences is a 
metric space but not each because of violation of triangle inequality, so we strongly believe that divergence measures can be 
extended to other significant problems of functional analysis and its applications, such investigations are actually in progress 
because this is also an area worth being investigated. Such types of divergences are also very useful to find the utility of an event 
(Bhullar et al., 2010 and Taneja and Tuteja, 1986)[, i.e., an event is how much useful compare to other event.  
 
We hope that this work will motivate the reader to consider the extensions of divergence measures in information theory, other 
problems of functional analysis and fuzzy mathematics.  
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