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INTRODUCTION 
 
There has been a lot of work on dual, triple and quadruple series equations involving different polynomials. Due to the importance 
of these series in finding the solutions of various mixed boundary value problems of elasticity, electrostatics and other fie
mathematical physics, a number of researchers took interest in finding the series solution as well as developing and investigating 
new classes of series equations. There was almost no research work on five series equati
taken it into consideration. They solved certain five series equations involving generalized Bateman K
and Leguerre and the product of ‘r’ generalized Bateman K
and Chandel [1], obtain the solution of five series equations involving generalized Bateman K
respectively.  In the present paper, we have considered five series equations involving series of Jacobi polynomials
extensions of quadruple series and untouched till date. 
 
FIVE SIMULTANEOUS FOURIER SERIES EQUATIONS INVOLVING JACOBI POLYNOMIALS 
 
The solution of five series equations involving series of Jacobi polynomials is obtained by reducing them to Fredholm integra
equations of the second kind in one independent variable. Dual, triple, quadruple and five series equations involving series of 
Jacobi polynomials can be change into the series involving ultra
amendment to the original one. These latter series equations play an important role in solving the mixed boundary value problems, 
when we consider the distribution of stresses in the interior 
line perpendicular to the boundary lines of the strip. Here we are concerned only with five series equations involving series of 
Jacobi polynomials which are extensions of quadruple series cons
 
THE EQUATIONS 
 
We shall solve the following set of five series equations
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There has been a lot of work on dual, triple and quadruple series equations involving different 
polynomials. Due to the importance of these series equations in finding the solutions of various mixed 
boundary value problems of elasticity, electrostatics and other fie
number of researchers took interest in finding the series solution as well as 
investigating new classes of series equations. There was almost no research work on five series 
equations until Dwivedi and Pandey taken it into consideration. They solved certain five series 
equations involving generalized Bateman K-functions, series of Jacobi and L
of ‘r’ generalized Bateman K-function. In the subsequent years Dwivedi and 
and Chandel [1], obtained the solution of five series equations involving generalized Bateman K
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equations involving series of Jacobi polynomials, which are e
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The solution of five series equations involving series of Jacobi polynomials is obtained by reducing them to Fredholm integra
ne independent variable. Dual, triple, quadruple and five series equations involving series of 
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   and if ( ),  (i 1, 2, 3, 4, 5)   are prescribed functions and equations (1.1) to (1.5) are to be solved for 

unknown coefficients nA . It is assumed that series (1.1) to (1.5) are uniformly convergent and if ( )  and their derivatives are 

continuous.  
 
PRELIMINARY RESULTS    
 
In the course of analysis, we require following results:  
 
The Orthogonality Relation for Jacobi Polynomials  
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We shall use the following two forms of Schlomilch’s Integral Equations: 
 

If f ( )  and f '( )  are continuous in a a b,    then the solutions of the integral equations:  
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THE SOLUTION 
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Using orthogonality relation (2.1) in equations (1.4), (1.5) and (3.1) to (3.3) we get 
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Substituting the expression for nA  from (3.4) in equations (1.1) to (1.3), we obtain 
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Applying the summation result (2.2) and interchanging the order of integration and summation, we get 
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Changing the order of integration in the above equation, we get  
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


    
  

                                                                                                                                 (3.21) 
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in equation (3.20), becomes  
 

c

2
b d

1
E(y)g'(u) P (u) h'( )A( , y)d k'( )A( ,  y)d

              

0 u a                                                                                                                                     (3.22) 
 
where  
 

 

a
1

2 1u 2

1 d SinP (y)dy
P (u)

du Cosu Cosy


 
                                                                                       (3.23) 

 

   

1
2

1
2

E(y)Sinu(Cos Cosa)
A( , y)

Cosa Cosu Cos Cosu


 

 
                                                                            (3.24) 

 
Again using summation result (2.3), in terms of integral in equation (3.9), we obtain 
 

  

c min(u, )

1b 0 2

E(y)dudy
h'(u) h'(u)

Cosy Cosu Cosy Cos

 



      
    

 

2
a

b d
Sin Q( ) g'(u)du k'(u)du

2


                

 

  

min(u, )

10 2

E(y)dy

Cosy Cosu Cosy Cos




  
 b c                                                          (3.25) 

 
or 
 
 

   

u

1 1b 0 2 2

E(y)dy
h'(u)du

Cosy Cosu Cosy Cos



  
   

 

   

c

1 10 2 2

E(y)dy
h'(u)du

Cosy Cosu Cosy Cos






  
   

 

   

2
a u

1 10 0 2 2

E(y)dy
Sin Q( ) g'(u)du

2 Cosy Cosu Cosy Cos

 
      

    
   

 

   
1 1d 0 2 2

E(y)dy
k'(u)du

Cosy Cosu Cosy Cos

  

   

  b c                                              (3.26) 
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Changing the order of above equation, we get  
 

   

2
c

1 1b y2 2

E(y)dy h'(u)du
Sin Q( )

2Cosy Cos Cosy Cosu


  

   
   

   

 

   

b c

1 10 b2 2

E(y)dy h'(u)du

Cosy Cos Cosy Cosu



   
   

 

   

a a

1 10 y2 2

E(y)dy g'(u)du

Cosy Cos Cosy Cosu


  
   

 

   
1 10 d2 2

E(y)dy k'(u)du

Cosy Cos Cosy Cosu

  

   

  b c                                                           (3.27) 

 
Using the results (2.4) and (2.6) in equation (3.27) we get  
 

   

2

c y

1 1y b2 2

Sin Q( )Sin d
h'(u)du d 2

E(y)
dyCosy Cosu Cos Cosy


 

   
 

 
   

 

     

y b c

1 1 1b 0 b2 2 2

1 d Sin d E(y)dy h'(u)du

dy Cos Cosy Cosy Cos Cosy Cosu

 
   

     
    

 

     

a

1 1 10 02 2 2

E(y)dy g'(u)du E(y)dy

Cosy Cos Cosy Cosu Cosy Cos


 

    
   

 

 
1d 2

k'(u)du

Cosy Cosu

 

 

 b c                                                                                                  (3.28) 

 
Changing the order of integration in above equation, we get  
 

   

c c b

11 1y b 02 2

h'(u)du 1 h'(u)du
E(y) Q (y) E(y)dy

Cosy Cosu Cosy Cosu


 

 
    
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   

a a

1 1t 0 d 02 2

g'(u)du k'(u)du
E(y)dy E(y)dy

Cost Cosu Cost Cosu

  
 
  

     

 

  

y

1b 2

d Sin d

dy Cos Cosy Cost Cos

 


    
 b c                                                  (3.29) 

 
where 
 

 

2

y

1 1b 2

Sin Q( )Sin d
d 2

Q (y)
dy Cos Cosy


 

   
 


                                                                            (3.30) 

 

       

1
2y

1 1 1 1b 2 2 2 2

d Sin d Siny(Cost Cosb)

dy Cos Cosy Cost Cos Cosb Cosy Cost Cosy

  


    
         (3.31) 

 
in equation (3.29), we get  
 

   

c

11 1y 2 2

h'(u)du 1 Siny
E(y) Q (y)

Cosy Cosu Cosb Cosy
 

 
  

 

 
   

1
2b c

10 b 2

E(t) Cost Cosb dt h'(u)du

Cost Cosy Cost Cosu

 


 
   

 

 
   

1
2a a

10 t 2

E(t) Cost Cosb dt g'(u)du

Cost Cosy Cost Cosu




 
   

 

 
   

1
2

10 d 2

E(t) Cost Cosb dt k'(u)du

Cost Cosy Cost Cosu

  


  
  b y c                                         (3.32) 

 
Putting the value of last integral of second term on the right hand side of equation (3.32) from equation (3.18), we get  
 

   

c

11 1y 2 2

h'(u)du 1 Siny
E(y) Q (y)

Cosb Cosy Cosb Cosy


 

 
  
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 
   

1
2b c

10 b 2

E(t) Cost Cosb h'(u)du
dt

Cost Cosy Cost Cosu



 
   

 

 
   

1
2a c

1
10 b 2

E(t) Cost Cosb P (t) h'(u)du
dt

Cost Cosy E(t) Cost Cosu

 
 

 
   

 

 

 
 

1
2

1d 02

E(t) Cost Cosbk'(u)du
dt

Cost CosyCost Cosu

  
 


   

 

 
1d 2

k'(u)du

Cosy Cosu

 

 

 b y c                                                                                           (3.33) 

 

 

   

c

1 31 1y 2 2

h'(u)du 1 Siny
E(y) Q (y) P (y)

Cosy Cosu Cosb Cosy
  

 
  

 

 
 
   

1
2b c

1a b 2

E(t) Cost Cosb dt h'(u)du

Cost Cosy Cost Cosu

 


 
   

 

  
 
   

1
2

1a d 2

E(t) Cost Cosb dt k'(u)du

Cost Cosy Cost Cosu

  


  
  b y c                     (3.34) 

 
where 
 

 

 

 
 

1
2a 1

3 1 b2

P (t) Cost Cosb dtSiny
P (y)

Cost CosyCosb Cosy





                                         (3.35) 

 

Let 

 

 
 

1
2b

1 a2

E(t) Cost Cosb dtSiny
B(u, y)

Cost CosyCosb Cosy





                                      (3.36) 

 

and 

 

 
 

1
2

1 a2

E(t) Cost Cosb dtSiny
C(u, y)

Cost CosyCosb Cosy

 



                                      (3.37) 

 
Now equation (3.34) can be reduced to the following form  
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 

c

1 31y 2

h'(u)du
E(y) Q (y) P (y)

Cost Cosu
 


  

 

  

   

c

1 1b d2 2

1 h'(u)B(u, y)du k'(u)C(u, y)du

Cost Cosu Cost Cosu

 
  

   
    b y c                       (3.38) 

 
Again applying the results (2.5) and (2.7), in equation (3.38) we get  
 

 

   

c c1 3
1 2 1u u2 2

Q (y) P (y) Sinsds1 d 1 d Sinsds
E(y)h '(u)

du duCosu Coss Cosu Coss


  

  
   

 

   

c

1 1b d2 2

B( , y)h'( )d C( , y)k'( )d

Coss Cos Coss Cos

 
      

     
   b y c                      (3.39) 

 
Changing the order of integration and using the result  
 

   

u

1 1c 2 2

d Sinsds

du Cosu Coss Coss Cos  
  

 

 

   

1
2

1 1
2 2

Sinsds Cos Cosc

Cosc Coss Cos Coss

 


 
                                       (3.40) 

 
Equation (3.39) can be written as  
 

c

2 2 2b d

1 1
E(y)h '(u) Q (u) h '( )B(s,  )d k '( )C(s,  )d


        

    

 

b u c                                                                                                                                     (3.41) 
 
where 
 

 

 

c 1 3
2 1u 2

Q (y) P (y) Sinsds1 d
Q (y)

du Cosu Coss


 

 
                                        (3.42) 

 

 

   

1
2

1 1
2 2

Sinu Cos Cosc
B(s,  ) B( ,  y)

Cosc Coss Cos Coss

 
  

 
                                       (3.43) 

and  
 

   

1
2

1 1
2 2

Sinu Cos Cosc
C(s,  ) C( ,  y)

Cosc Coss Cos Coss

 
  

 
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                                                                           (3.44) 
 
Again using summation result (2.3) in terms of integral in equation (3.10) we get 
 

 

  

min(u, )

1d 0 2

E y
k '(u) k '(u) dudy

Cosy Cosu Cosy Cos

  



        
    

 
2

a c

0 b
Sin R( ) g '(u)du h '(u)du

2


                

 

 

  

min(u, )

10 2

E y dy

Cosy Cosu Cosy Cos




  
  d c                     (3.45) 

 

 

   

u

1 1d 0 2 2

E y dy
k '(u)du

Cosy Cosu Cosy Cos



  
   

 

or 
 

   
1 10 2 2

E y dy
k '(u)du

Cosy Cosu Cosy Cos

 




  
   

 

  

2
a c

0 b
Sin R( ) g '(u)du h '(u)du

2


                

 

  
 

   
1 10 2 2

E y dy

Cosy Cosu Cosy Cos



  
  d                        (3.46) 

 
Changing the order of integration in equation (3.46), we obtain 
 

 

   

2

1 1d y2 2

E y dy k'(u)du
Sin R( )

2Cosy Cos Cosy Cosu


   

   
   

   

 

 

   

 

 

a a b

1 1 10 0 02 2 2

E y dy E y dyg'(u)du

Cosy Cos Cosy Cosu Cosy Cos


 
     
    

 

 

 

   

c c c

1 1 1b b y2 2 2

E y dyh'(u)du h '(u)du

Cosy Cosu Cosy Cos Cosy Cosu
 

   
    

 

 

   

d

1 10 d2 2

E y dy k '(u)du

Cosy Cos Cosy Cosu

 

   

   d                        (3.47) 
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Using the results (2.4) and (2.6), we get  
 

 
   

2

y

1 1y d2 2

Sin .R( )Sin d
k'(u)du d 2

E y
dyCosy Cosu Cos Cosy





 
   

 
 

   

 

 

 

   

y a a

1 1 1d 0 y2 2 2

E y dy1 d Sin d g'(u)du

dy Cos Cosy Cosy Cos Cosy Cosu


  

    
    

 

 

   

 

 

b c c

1 1 10 b b2 2 2

E y dy E y dyh '(u)du

Cosy Cos Cosy Cosu Cosy Cos
 

    
    

 

 

 

   

c d

1 1 1y 0 d2 2 2

E y dyh'(u)du k '(u)du

Cosy Cosu Cosy Cos Cosy Cosu

 
 
    

    

 

d y                                                                                                                                       (3.48) 

 
Changing the order of integration and applying the result.  
 

   

 

   

1
2y

1 1 1 1d 2 2 2 2

Siny Cost Cosdd Sin d

dy Cos Cosy Cost Cos Cosd Cosy Cost Cosy

 


    
                  (3.49) 

 
in equation (3.48), we get  
 

 
   

11 1y 2 2

k '(u)du 1 Siny
E y R (y)

Cosy Cosu Cosd Cosy


 

 
  

 

 
   

1
2a a

10 t 2

E(t) Cost Cosd dt g'(u)du

Cost Cosy Cosy Cosu

 


 
   

 

 

   

1
2b c

1 10 b2 2

E(t) Cost Cosd dt h'(u)du

Cost Cosy Cost Cosu




 
   

 

 

   

1
2c

1 1t 2 2

E(t) Cost Cosd dt h'(u)du

Cost Cosy Cost Cosu




 
  
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 

   

1
2d

1 10 d2 2

E(t) Cost Cosd dt k'(u)du

Cosy Cosy Cost Cosu

 

  

  d y                                        (3.50) 

 
where 
 
  

 

2

y

1 1d 2

Sin .R( )Sin d
d 2

R (y)
dy Cos Cosy


 

   
 


                                (3.51) 

 
Now putting the values of last integral of first and third terms on the right hand side from equations (3.18) and (3.38), we get 
 

 
 

1 21y 2

k '(u)du
E y R (y) R (y)

Cosy Cosu


 


  

 

   

c

1 1b d2 2

1 h'(u)U(u, y)du k'(u)V(u, y)du

Cost Cosu Cost Cosu

 
  

   
   d y                                         (3.52) 

 
where 
 

 

 
 

1
2a

1
2 1 b2

P (t) Cost CosdSiny
R (y) dt

Cost CosyCosd Cosy

 


 
  

 

  
 

1
2c 1 3

b

Q (t) P (t) Cost Cosd dt

Cost Cosy

 


 


                                (3.53) 

 

 

 
 

1
2a

1 02

E(t) Cost CosdSiny
U(v, y) dt

Cost CosyCosd Cosy

 


 
  

 

 
   

1 1
2 2b c

0 b

E(t) Cost Cosd dt E(t)B(v, t)(Cost Cosd) dt

Cost Cosy Cost Cosy

   
  


                                    (3.54) 

 

 

 
 

1
2a

1 02

E(t) Cost Cosd dtSiny
V(v, y)

Cost CosyCosd Cosy

 


 
  
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 
   

1 1
2 2b c

0 b

E(t) Cost Cosd dt E(t)C(v, t)(Cost Cosd) dt

Cost Cosy Cost Cosy

   
  


                                  (3.55) 

 
Again applying the results (2.5) and (2.7) in equation (3.52), we get 
 

 

 

1 2
1u 2

R (y) R (y) Sinsds1 d
E(y)h'(u)

du Cosu Coss

 
 

 
  

 

c

2 1 1 1u b d2 2 2

1 d Sinsds U( , y)h'( )d V( , y)k'( )d

du (Cosu Coss) (Coss Cos ) (Coss Cos )

 
        
      

                     (3.56) 

 
Changing the order of integration and using the result  
 

   

 

   

1
2

1 1 1
2 2 2

Sinu Cos Cosd Sinsds

du Cosu Coss Coss Cos Cos Coss Cos Coss





 


    
           (3.57) 

 
in equation (3.56), we get  
 

c

3 2 2b d

1 1
E(y)k'(u) R (u) h'( )U(s, )d k'( )V(s, )d


       

    

    

d u                                                                                                                            (3.58) 
 
where 
 

 

 

1 2
3 1u 2

R (y) R (y) Sinsds1 d
R (u)

du Cosu Coss

 
 

 
                               (3.59) 

 

 

   

1
2

1
2

Sinu Cos Cos
U(s, ) U( , )

Cos Coss Cos Coss

 
   

 
                              (3.60) 

and  

 

   

1
2

1
2

Sinu Cos Cos
V(s, ) V( , )

Cos Coss Cos Coss

 
   

 
                              (3.61) 

Equations (3.22), (3.41) and (3.58) are Fredholm integral equations of the second kind which determine g'(u), h'(u) k'(u)  

respectively. Knowing the values of g'(u),  h'(u) and k'(u) , the values of coefficients nA , can be obtained from (3.4).  

 
Particular Cases 
 

If we let d in equations (1.1) to (1.5), they reduce to the corresponding quadruple series equations considered earlier in [2] 
and the above solution agrees with that obtained previously. Similarly, the solution of corresponding triple and dual series can be 
obtained as particular cases.  
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