

RESEARCH ARTICLE

FRAMEWORK FOR INTEGRATING SOFTWARE APPLICATIONS IN GRID
COMPUTING ENVIRONMENT

Adesina, O.O*. and Aremu, D.R.

Department of Computer Science, Faculty of Communication and Information Science, University of Ilorin,
Ilorin, Nigeria

ARTICLE INFO ABSTRACT

Grid is a computing and data management infrastructure whose goal is to provide electronic
underpinning for a global society in business, government, research, science and entertainment.
Being a distributed system, grid is complex due to the heterogeneous nature of the underlying
software and hardware resources forming it. The heterogeneous nature of grid will hinder
interoperation of grid applications. In this paper, we present a framework for integrating grid
applications in spite of its distributed and heterogeneous nature. To realize this, we perform
extensive review of similar implementation solutions for managing and integrating
heterogeneous distributed applications. Similarly, we have developed a model for integrating
heterogeneous grid applications. Moreover, we discussed the implementation strategy for the
model designed. Finally, we summarized this paper and stated future thoughts to realize a fully
operational grid computing environment.

© Copy Right, IJCR, 2011, Academic Journals. All rights reserved

INTRODUCTION

Buyya et al. [1] defined grid as a type of parallel and
distributed system that enables the sharing, selection, and
aggregation of geographically distributed `autonomous'
resources dynamically at runtime depending on their
availability, capability, performance, cost, and users' quality-
of-service requirements. Grid computing integrates
networking, communication, computation and information to
provide a virtual platform for computation and data
management in the same way the Internet integrates resources
to form a virtual platform for information. Dubitzky [2]
enumerated the promises of sharing resources with grid. Grid
computing, being a distributed system is complex due to the
heterogeneous nature of the underlying software and hardware
resources forming it. According to Michael Stal [3],
documented issues of heterogeneity embattling distributed
systems such as grid include differences in: (i) network
technologies, devices, and operating systems; middleware
solutions and communication paradigms; (ii) programming
languages; (iii) services and interface technologies; (iv)
domain and machine architectures; and (v) data and document
formats. However, grid computing will fulfill its promises, if
and only if the issues of heterogeneity can be managed. The
aim of this paper is to develop a software model for integrating
software applications in the grid computing environment.

*Corresponding author: opeyemi.adesina@gmail.com;draremu2006@gmail.com

We used the following objectives to achieve the aim stated for
this paper: (i) to analyze the existing implementation solutions
for distributed systems; (ii) to design a model/framework for
implementing the grid systems and to implement the model
designed. In the literature, various implementation solutions
have been developed for integrating heterogeneous
applications. These include CORBA, DCOM, GLOBE, and
Java RMI. However, these solutions are either programming
language-dependent or platform-specific. This has led us to the
design of a model for software collaboration in the grid
environment. The model designed is based on the
specifications and standards of web services framework. The
paper also presented an implementation prototype of the
model designed. The rest of the paper is organized as follows:
Section 2 presented the related work by discussing various
implementation solutions that can be adopted for the
development of a blueprint for integrating grid applications. In
section 3, we discussed the Software Infrastructural model for
integrating grid applications. Section 4 presented the internal
structure of the grid systems, while in section 5, we presented
a prototype implementation of the model designed. Section 6
concluded the paper.

Related Work

In the literature, various implementation solutions have been
developed to manage heterogeneity in distributed systems.
These include CORBA, DCOM, GLOBE, and Java RMI.

ISSN: 0975-833X

 Available online at http://www.journalcra.com

International Journal of Current Research
Vol. 3, Issue, 8, pp.082-087, August, 2011

 INTERNATIONAL JOURNAL
 OF CURRENT RESEARCH

Article History:

Received 12th May, 2011
Received in revised form
18th June, 2011
Accepted 28th July, 2011
Published online 5th August, 2011

Key words:

Grid computing,
Heterogeneity issues,
Distributed system.

Common Object Request Broker Architecture (CORBA)

Common Object Request Broker Architecture (CORBA) [4,5]
is an industry defined standard for distributed systems. An
important goal of the Object Management Group, OMG with
respect to CORBA was to define a distributed system that
could overcome many of the interoperability problems, with
integrating networked applications. CORBA’s global
architecture adheres to a reference model of the OMG. The
reference model consists of four groups of architectural
elements connected to the Object Request Broker (ORB).
ORB forms the core of any CORBA distributed system; it is
responsible for enabling communication between objects and
their clients while hiding issues of heterogeneity. CORBA
adopts the remote-object model. In its remote-object model,
implementation of an object resides in the address space of a
server. While CORBA server object and service are specified
in Interface Definition Language (IDL). This IDL provides a
precise syntax for expressing methods and their parameters.
CORBA interface is a collection of methods, and objects
specify which interfaces they implement. These interfaces are
binary in nature and independent of programming languages.
On the other hand, client applications usually have a proxy
available that implements the same interface as each object it
is using. A proxy is a client-side stub that merely marshals an
invocation request and sends that request to the server. A
response from the server is unmarshaled and passed back to
the client. Server-side proxy can be statically compiled from
CORBA IDL specification or dynamically available as a
skeleton. When using dynamic skeleton, an object will have to
provide proper implementation of the invoke function as
offered to the client. To allow dynamic construction of
invocation requests, it is important that a process can find at
runtime what an invocation look like. This is addressed by
CORBA interface repository. CORBA interface repository
stores all interface definitions. In CORBA interface repository
is view as a part of CORBA that assist in runtime type
checking. The interface repository stores all information
needed for the implementation and activation of objects.
CORBA uses Portable Object Adapter (POA) for its objects
activation. Many interoperability issues in early versions of
CORBA systems were addressed by standard communication
protocol, known as General Inter-ORB Protocol (GIOP).
GIOP is actually a framework for a protocol; it assumes that
an actual realization is executed on top of an existing transport
protocol. However, it is essential that transport protocols
reliable, connection-oriented, and provide notion of a byte
stream, along with a few other features. TCP satisfies these
requirements. The realization of GIOP running on top of TCP
is called the Internet Inter-ORB Protocol, IIOP [4].

The adoption of CORBA as a middleware for the integration
of distributed applications has some benefits and limitations.
One of its benefits is that CORBA implementation naturally
accommodates extensions. Being an effort of committees, it
has features and facilities in abundance. It is flexible in
architectural models. CORBA is programming language,
operating systems, and machine independent. It offers facility
to find services that are available to a process. CORBA allows
dynamic construction of invocation requests. Its flexibility in
assigning interface identifiers, allows uniqueness in interface
definitions within interface repository. It is a better platform
for reusing legacy systems. CORBA is suitable for large web-

enabled applications where performances under heavy client
load are crucial. Although CORBA is programming language
independent, however it is necessary to provide exact rules
concerning the mapping of IDL specifications to existing
programming languages. Till date, only few of these rules are
available. It also illustrates that making a simple distributed
system may be somewhat overwhelmingly difficult exercise.

Distributed Component Object Model (DCOM)

Distributed Component Object Model (DCOM) [4,6]
originated from Component Object Model (COM). COM is
the underlying technology of various Windows operating
systems produced by Microsoft starting with Windows ’95.
Like all object-based systems, DCOM adopts remote-object
model. DCOM object is an implementation of an interface
which can either be placed in the same process, as client on the
same or remote machine. It has only binary interfaces, and
each interface is essentially table of pointers to the
implementations of the methods that are part of the interface.
To define these interfaces, DCOM uses Microsoft IDL
(MIDL). The standard layout for binary interfaces is generated
from the IDL. These binary interfaces are programming
language independent. And each interface in DCOM has a
unique 128-bit identifier, called its Interface identifier (IID).
Objects in DCOM are created as an instance of a class. To do
so, it is necessary to have that class available. For this reason,
DCOM has class objects. Formally, such an object can be
anything that implements the IClassFactory interface. This
interface contains the method CreateInstance, which is
comparable to the new operator in Java. By invoking
CreateInstance on a class object has the implication of creating
DCOM object, containing implementation of the interfaces
associated with the class object. A class object is a collection
of objects that implement the same set of interfaces. Objects of
the same class differ only with respect to their current state.
By instantiating an object from a given class objects, it
becomes possible to invoke the methods contained in those
interfaces. Objects invocation in DCOM can either be dynamic
or static. All objects that implement IUnknown interface can
be invoked statically; while objects for which an invocation
request can be constructed at runtime are required to
implement IDispatch interface. The equivalent of CORBA
interface repository in DCOM is called a type library. The type
library is generally associated with an application or other
component consisting of various class objects. The library
itself can be stored in a separate file, or included as part of an
application. In any case, a type library is primarily used to find
out exact signature of a method that is to be invoked
dynamically. Object activation in DCOM is supported by the
combination of Windows registry and Service Control
Manager (SCM). On the client side, a process is given access
to the SCM and the registry to help look up and set up a
binding to a remote object. The client will be offered a proxy
implementing the object’s interface. Every server object has a
stub for marshaling and unmarshaling invocations, which are
passed to the actual object. Communication between the client
and server is normally done by means of RPC.

DCOM is a widely accepted middleware solution, with tens of
millions of people using windows daily in networked
environment [4]. It is programming language independent.
DCOM also supports dynamic invocation of objects. It offers

083 International Journal of Current Research, Vol. 3, Issue, 8, pp.082-087, August, 2011

interface repository for storing and retrieving interfaces. To
facilitate object activation, DCOM offers Service Control
Manager (SCM) in conjunction with the Window registry. Due
to the transient nature of DCOM’s objects, garbage collection
is less an issue. In spite of these benefits, DCOM has its
problems. One of these is that DCOM is not an effort of a
committee. Based on this, it offers minimal set of core
elements from which components and services are built.
DCOM is an intricate system, because similar things can be
done in different ways, and such that coexistence of different
solutions is sometimes even impossible. It is platform
dependent (i.e. Windows platforms). Passing object
references, to another process in DCOM demands special
measures, because its objects are transient by virtue of its
object model.

Global Object-Based Environment (GLOBE)

Global Object-Based Environment (GLOBE) [4,7] is an
object-based system in which scalability plays a central role.
All aspects that deal with constructing a large-scale wide-area
system that can support huge numbers of users and objects
drive the design of Globe. Like other object-based systems,
objects in GLOBE are expected to encapsulate state and
operations on that state. An important difference with other
object-based systems is that objects are also expected to
encapsulate the implementation of policies that prescribe the
distribution of an objects state across multiple machines.
Objects in Globe describe how, when, and where their state
should be migrated and replicated. Unlike most other object-
based distributed systems, Globe does not adopt remote-object
model. Instead, the state of an object can be distributed and
replicated across many processes. Any process that is bound to
a distributed shared object is offered a local implementation of
the interfaces provided by the object. Such a local
implementation is called a local representative or object. Each
local object implements a standard object interface called
SOInf. Local objects are assumed to implement binary
interfaces that essentially consist of tables of function pointers.
The specification of interfaces is supported by an Interface
Definition Language (IDL). Local objects consist of at least
four sub-objects. These are semantics, communication,
replication, and control sub-objects. Each of the sub-objects is
used for special purpose. Semantic sub-object implements the
functionality provided by a distributed shared object.
Communication sub-object is used to provide a standard
interface to the underlying network. The most important sub-
object to all Globe objects is the replication sub-object. It
implements the actual distribution strategy for an object.
Control sub-object is used as an intermediate between user-
defined interfaces of the semantics sub-object and
standardized interfaces of the replication sub-object. In
contrast to CORBA and DCOM, Globe does not provide an
interface repository, nor does it have equivalent of an
implementation repository. This is a result of the object model
adopted by Globe. In the same vein, binding a process to an
object in Globe involves loading the specific local object into
its address space as indicated by the distributed shared object
to which it is binding. A complete binding starts with
provision of human-readable name to the DNS-based naming
service provided by Globe; and the service returns a globally
unique and location-independent object handle. The globally
unique object handle is given to the Globe location service;

and a set of contact addresses for the given object is returned.
From the set of contact addresses returned, a process will
select a contact address using a selection criterion such as the
distance to an address or expected QoS when binding to a
specific address. Each contact address specifies exactly the
local object that the process should load. Local objects are
loaded and instantiated from a class repository. Finally,
binding ends with the initialization of local objects. Through
these objects, clients subsequently contact the local objects
that form part of the distributed shared object.

Using Globe as an infrastructure for integrating distributed
software applications has great benefits as well as
disadvantages. Its benefits are that, it can be used to support a
huge number of users and objects spread across the internet,
which is contrary to most other object-based distributed
systems. Globe objects make decisions on how, when, and
where its state should be migrated? They may also determine
the security policies and implementation. Because the location
service may return many contact addresses for an object, it
does give options to select a contact address based on any
selection criterion, such as distance or expected QoS. Objects
contact addresses are flexible in specifications. This empowers
clients to use any implementation, provided it obeys the rules
guiding the protocol. However, the flexibility in contact
address specifications comes with a price of having to make
implementations for different local objects, and possibly for
different operating systems and machine architectures.

Java Remote Method Invocation (JRMI)

The major goal of introducing distributed objects with Java
Remote Method Invocation (JRMI) [4,8] was to keep as much
of the semantics of non-distributed objects as possible. That is
to maintain high degree of distribution transparency. JRMI
adopts remote objects model as only form of distributed
objects. By remote object, we mean a distributed object whose
state always resides on a single machine, but whose interfaces
can be made available to remote processes. Remote objects in
JRMI are built from two different classes. A class contains an
implementation of server-side code, known as the server class.
The class contains an implementation of that part of the
remote object that will be running on a server. The server-side
stub, otherwise called skeleton, is generated from the interface
specifications of the object. The other class contains an
implementation of the client-side, which we refer to as the
client class. This class contains an implementation of a proxy.
Similar to the skeleton, this class is also generated from the
object’s interface specification. The main function of proxy is
to convert each method call into a message that is sent to
server-side implementation of the remote object, and convert a
reply message into the result whenever a method is called. For
each call, it sets up a connection with the server, which is
subsequently terminated at the end of the call. For this
purpose, the proxy needs the server’s network address and
endpoint. This information and the local identifier of the
object at the server, is always stored as part of the state of a
proxy. In principle, proxy marshaling involves conversion of
its complete implementation to a series of bytes. However,
marshaling code like this is inefficient and may lead to large
references. Hence, in JRMI proxy marshaling involves
generation of implementation handle, specifying the classes
needed for the construction of proxy. This approach reduces

084 International Journal of Current Research, Vol. 3, Issue, 8, pp.082-087, August, 2011

references to remote objects to a few hundred bytes. The
approach is flexible and it is one of the distinguishing features
of JRMI; and it allows for object-specific solutions. Binding a
remote object by the client involves copying the entire state to
client machine. Each time the client invokes a method, it
operates on a local copy. To ensure consistency, each
invocation checks for change of state at the server side, in
which case the local copy is refreshed. Therefore, the
developer of the remote object will only have to implement the
necessary client-side code and clients dynamically download it
during binding. Passing proxy in JRMI as parameter works
only because each process is executing the same virtual
machine. That is each process is running in the same
environment. A marshaled proxy is simply unmarshaled at the
receiving side, after which its code can be executed.

Benefits of using JRMI as a software infrastructure for
integrating distributed resources are enormous. The distinction
between local and remote objects is hardly visible at the
language level. It also hides most of the differences during a
remote method invocation. Java RMI makes distribution
apparent where a high degree of transparency is simply too
inefficient, difficult, or impossible to realize. The complexity
associated with marshaling proxy by converting its complete
implementation into series of bytes, was addressed by
generating implementation handle, specifying precisely the
classes needed for constructing proxy. This makes Java RMI
the most efficient of all object-based distributed systems. Also,
JRMI can hide most of the differences during a remote method
invocation. However, primitive or objects involved in this
process must be serializable; but platform-independent objects
such as file descriptors and sockets can not be serialized.

Model for Integrating Grid Applications

This section presents a model for integrating software
applications in the grid computing environment. The model
(Figure 1), is composed of a set of clients and servers systems;
resource broker; Wide Area Networks (WAN)/Local Area
Network (LAN); and Application Programming Interfaces
(e.g. inquiry and publisher APIs). A Client in the context of
this model refers to a computer system housing a software
application or a process that accesses service(s) on other
computer system(s), known as servers, via a network. A server
in similar context is a computer system with computer
programs or software running as services, and serves the need
or request of other application programs (clients).

Figure 1: Model for integrating software applications in grid

Resource broker is agent software in grid environment that
acts as middleman between clients and servers. It provides
interfaces for service providers (servers) to store and update
information of services they offer in the grid computing
environment. These interfaces are provided through the
Publication API. Similarly, clients on can look-up or access
published service(s) information through the Inquiry API in
the model presented (figure 1). In other words, the resource
broker is software that implements the mechanism needed for
discovery, description and integration of services, in order to
overcome all forms of interoperability problems characterizing
distributed community. Grid as a distributed system demands
that its systems must be interconnected. Hence, the block
labeled WAN or LAN represents a backbone linking all
computer resources in grid community. This implies that grid
may be set up within a confined geographical location (LAN)
or the internet (WAN). In order to hide completely, the
differences in grid resources, we have considered various
technological infrastructures in the design of this model. These
include eXtensible Markup Language (XML), Web Service
Description Language (WSDL) [9,10], Simple Object Access
Protocol (SOAP) [10,11], Universal Description, Discovery
and Integration (UDDI) [12,13], and Hypertext Transport
Protocol (HTTP) [14].

XML [15] is a document processing standard that is officially
recommended by the World Wide Web Consortium (W3C).
The use of XML in the design of our model is based on the
facts that it solves all problems of heterogeneity in a
distributed community. For the capability of XML to solve all
forms of heterogeneity, WSDL, SOAP, and UDDI (i.e. web
services specifications) are built on XML. Similar to the GIOP
in CORBA, SOAP has been adopted as a standardized
packaging protocol for messages shared between software
applications in grid. Software interfaces are usually defined
using an Interface Definition Language. In the design of this
model, we adopted WSDL as a description language for
expressing interface of services. This is similar to CORBA
IDL and DCOM MIDL. Once the WSDL of a service has been
created, a client must be able to find it, in order to be able to
use it. This is referred to as service discovery. Like interface
repository in CORBA and Window registry in DCOM, UDDI
has been adopted as a resource discovery mechanism in the
design of our model. Furthermore, to enable direct application-
application on the network layer requires a standardized
transport protocol. Transport protocols such as TCP, Jabber,
SMTP and HTTP has been developed. However, we have
adopted HTTP in the design of our model, because it provides
the most ubiquitous firewall support.

Internal Structure of Grid Systems

The figure 2, shows the internal structure of the grid systems.
The figure is made of three parts: the client, the server, and the
resource broker. The client is divided into four basic parts.
These include client application, stub or proxy, dynamic
invocation interface, and operating system. Client application
refers to computer program on client’s system. Its input is an
output from the service execution in the server’s address
space. Programs on client system can only access service
implementation remotely via stub or dynamic invocation
interface. Stub handles marshaling of client’s requests and
unmarshaling of server responses. The stub is generated by

085 International Journal of Current Research, Vol. 3, Issue, 8, pp.082-087, August, 2011

downloading and compilation of WSDL file of the service
implementation provided by the server. This is similar to the
client-side proxy in CORBA and JRMI. Binding remote
services by grid clients can not only be done through proxy,
but also dynamic invocation interface. Dynamic binding
allows client application to invoke service whose data types
were unknown at the time the client was compiled. The
operating system is software that houses computer programs
and data. It also manages computer hardware resources and
provides common services for efficient execution of
application software. The structure of server system presented
in figure 2 is divided into four components. These are service
implementation, SOAP processor, service listener and
operating system. Service implementation is the actual
software application offered as a web service in the presented
grid computing environment. In the same vein, similar to the
server-side stub in CORBA and skeleton in JRMI is the SOAP
processor. The SOAP processor handles marshaling and
unmarshaling of server response and client request
respectively. A relationship between service implementation
and SOAP processor is presented in figure 3 below.
Furthermore, the service listener refers to software port. This
acts as a unique address for locating service implementation of
servers on the grid. Finally, the operating system component
on grid’s server is similar to that described under client.

Resource broker presented in figure 2 above is similar to
interface repository and type library in CORBA and DCOM
respectively. It is designed as a mechanism for describing,
discovering and integrating software resources in the grid
community. Although, the internal structure is not included in
figure 2, we have divided the broker into two basic parts.
These include the service endpoint and the broker software.
The service endpoint comprises of the operating system,
service listener, and SOAP processor in the server presented in
Figure 2. While the broker software represents the
implementation of the UDDI core data structures. In other
words, broker software is a service implementation which can
be consumed by clients and servers for inquiry and publication
respectively. However, the SOAP processor shown in figure 3
is divided into three different layers. These include message,
application, and processing layers. The message layer contains
incoming and outgoing messages. Incoming messages are

SOAP messages forwarded by the client to the server. On the
other hand, the outgoing SOAP response messages by the
server. The application layer is the actual service
implementation. And the processing layer is divided into five
different phases. These are: (1) de-serialization, (2)
transformation, (3) disassembling, (4) assembling, and (5)
serialization.

At the de-serialization phase, the incoming SOAP message is
validated for conformation to XML, and parsed against
external SOAP schema. After parsing, the message is
transformed into domain-specific XML representation. This
process involves removing the envelope for the SOAP
message received. In other words, it implies gathering relevant
information from the SOAP message received. Furthermore,
the domain-specific XML representation is disassembled into
in-memory tree that can be modified by the service
implementation (i.e. list of arguments required for the
execution of the service implementation). The list of
arguments obtained from the message received is passed to the
application layer as arguments. At the application layer, the
business logic embedded in the target method is applied to the
arguments and response is generated as a result of the method
execution. The response obtained from the application layer is
assembled into XML at phase (4) in figure 3 above. The
output of phase 4 is further transformed to SOAP by inserting
the output into a SOAP envelope. Finally, the SOAP envelope
generated at phase 2 is validated against external SOAP
schema. This is essential in order to ensure that the response is
a valid SOAP message that can be processed at the client side.

Implementation

The prototype implementation of the model presented in
section 3 has been realized with Java API for XML Web
Services (JAX-WS) available in the NetBeans Integrated
Development Environment (IDE). JAX-WS allows creation
and consumption of web services. In the model presented,
there are three major components. These are resource broker,
server, and client. The detail implementation exercise of these
components is discussed as follow. We implemented the
resource broker (i.e. specifications of UDDI project) as a web
service. The resource broker implemented provided interfaces
for publication of information about service implementation
by servers and inquiry of published service information by
clients. Furthermore, we generated WSDL file for the resource
broker and make it available on the home page of the web
service for accessibility of client and server systems in grid
community. Hence, we deployed the resource broker to the
local server provided by the IDE. By deploying the resource
broker, we make available the interfaces of the web service for
consumption. In the same vein, we implemented the server in
the following manner. First and foremost, the server system
compiled the WSDL file provided at the home page of the
resource broker. The compilation generates the proxy for
communicating with the broker. Any system in the presented
grid environment can play roles of server and client
simultaneously. For this reason, the WSDL file compiled by
the server system makes open interfaces for publication and
inquiry. Furthermore, we developed a calculator web service
as a service implementation to be consumed in grid. The
information for describing and categorizing the calculator web
service developed is documented as an entity and published

086 International Journal of Current Research, Vol. 3, Issue, 8, pp.082-087, August, 2011

into the resource broker via a publication API. Finally, we
implemented the client in the grid as follow. Similar to the
server system implemented, the client also compiled the
WSDL file provided at the home page of the resource broker.
The client can also play the roles of client and server
simultaneously. After the compilation of the broker’s WSDL
file, the stubs or proxies necessary for communication with the
broker are created. Therefore, we search the calculator web
service using various categorization systems. The essence of
this is to gather the information required demanded for
binding. We then compile the WSDL of the calculator web
service to generate client-side stubs. We bind the calculator
web service via the stubs generated.

Conclusion and future thoughts

The unprecedented growth of data and information in a wide
range of knowledge sectors [2,16] is an indication for the need
of efficient computer resources to store, analyze and process
these data in order to justify their existence and maximize their
use. Grid computing has emerged as a standardized
computational infrastructure for such demands. Its emergence
is in line with its ability to integrate heterogeneous computer
resources across the globe in a manner similar to the internet.
However, pooling grid’s resources together is a complex task.
The major complexity arises from the heterogeneous nature of
the underlying software and hardware resources forming it. In
order to foster the adoption of grid in various sectors, it is
essential to develop a framework for integrating the
heterogeneous software applications in grid. The literatures
reviewed include CORBA, DCOM, Globe, and JRMI as
solutions that can be adopted for integrating grid resources.
However, platform and programming language specific
natures of these solutions render them unusable in grid
computing. We have designed a model for integrating software
applications in grid irrespective of the issues of heterogeneity
characterizing the existing solutions. The model designed is
based on the standards and specifications of web services. A
prototype implementation of the designed model has been
developed with JAX-WS. As grid becomes the most
appropriate solution to solving grand challenge problems
[2,17], we expect our framework to support some mechanisms.
These mechanisms include: a resource matching mechanism
for matching available resources to clients’ requests; a multi-
agent intelligent system to replicate service information
published within brokers in the registry; an efficient fault-
tolerant mechanism to handle faults during job execution; and
a security mechanism for authenticating servers and clients.

REFERENCES

[1] Rajkumar Buyya, Chee Shin Yeoa, Srikumar

Venugopala, James Broberg, Ivona Brandic. Cloud
computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility.
Future Generation Computer Systems 2008:25 599-616.

[2] Dubitzky Werner. Data Mining Techniques in Grid
Computing Environment. West Sussex: John Wiley and
Sons; 2008.

[3] Stal M. Web Services: Beyond Component-Based
Computing. Communications of the ACM
2002:45(10):71–76.

[4] Tanenbaum AS, van Steen M. Distributed Systems
Principles and Paradigms. NJ: Prentice-Hall; 2002.

[5] Object Management Group. The Common Object
Request Broker: Architecture and Specification,
Revision 2.4.2. Framingham: Object Management
Group; 2001.

[6] Platt D. The Essence of COM and ActiveX: A
programmers Workbook. NJ: Prentice Hall; 1998.

[7] Homburg P,van Doorn L, van Steen M, Tanenbaum AS,
de Jonge W. An Object Model for Flexible Distributed
Systems. In Proceedings 1st Annual ASCI Conference
1995: 69-78.

[8] T. Java RMI: Remote Method Invocation. IDG Books
Worldwide Inc.; 1998.

[9] Christensen, E., Curbera, F., Meredith, G.,
Weerawarana, S. Web Services Description Language
(WSDL) 1.1. W3C Note, Available at
http://www.w3.org/TR/WSDL, 2001.

[10] Dough T, James S, Pavel K. Programming Web
services with SOAP. O’Rielly; 2001.

[11] Box E, Ehnebuske D, Kakivaya G, Layman A,
Mendelsohn N, Nielsen H, Thatte S, Winer D. Simple
Object Access Protocol (SOAP) 1.1. Available at
http://www.w3.org/TR/SOAP; 2002.

[12] Bellwood T, Clement L, Ehnebuske D, Hately A,
Hondo M, Husband Y, Jaruszewski K, Lee S, Mckey B,
Munter J, Reigen C. UDDI Version 3.0 Technical
Report. Available at http://uddi.org/pubs/uddi-v3.00-
published-20020719.htm; 2002.

[13] McGovern J, Tyagi M, Stevens M, Matthew S. Java
Web Services Architecture. Morgan Kaufmann
Publishers; 2003.

[14] Fielding R, Gettys J, Mogul J, Frystyk H, Masinter L,
Leach P, Berners-Lee T. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616; 1999.

[15] Eckstein R, Casabianca M. XML Pocket Reference. 2nd
Edition. O’Rielly; 2001.

[16] Wright A. Glut: Mastering Information through the
Ages. Washington D.C.:Henry; 2007.

[17] Wah, B. Report on workshop of high performance
computing and communications for grand challenge
applications: computer vision, speech and natural
language processing, artificial intelligence. IEEE
Transactions on Knowledge and Data Engineering
1993:5 (1): 138-154.

087 International Journal of Current Research, Vol. 3, Issue, 8, pp.082-087, August, 2011

