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INTRODUCTION 
 

Fuzzy Linear Fractional Programming Problem (
variables are linear both in fuzzy constraints and the functions to be optimized.  A fuzzy linear fractional functional progr
to optimize a given ratio of two fuzzy linear func

fuzzy linear equations � � � � = � �  is said to be fuzzy homogeneous constraint if 
� � =0� . Zimmermann (Zimmermann, 1996) presented a fuzzy approach to multi objective linear programming problem.  He also 
studied the duality relations in fuzzy linear programming.  Maleki
linear programming problem with fuzzy var
programming problem was introduced by Nagoor Gani
S. Sekar (Mohan and Sekar, 2014) proposed a new technique for solving a linear programming problem with homogeneous 
constraints in fuzzy environment.  Also they introduced fuzzy linear programming problem with fuzzy homogeneous constraints 
(Mohan and Sekar, 2014). Nachammai, Al and 
metric Distance Ranking (Nachammai and Thangaraj, 2012)
optimization process when a constraint is fuzzy homogeneous.
homogeneous constraints. In this paper, section 2 deals with some preliminary definitions and existing function principal 
operations are given.   Development of a fuzzy transformation matrix and relatio
FLFPP explains   in section 3. Numerical example and conclusion are given in last two sections.
 

Preliminaries 
 

In  this section some   fundamental definitions , operations and concepts of fuzzy set theory  are
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ABSTRACT 

In this paper, we propose  a new method for solving a Fuzzy Linear F
(FLFPP) when some of its constraints are fuzzy homogeneous in trapezoidal fuzzy numbers.  Using 

e fuzzy homogeneous constraints a fuzzy transformation matrix 
transforms the given problem in to another FLFPP with fewer fuzzy constraints.  A relationship 
between these two problems, which ensure that the solution of the original problem can be recovered 
from the solution of the transformed problem.  A simple numerical example explains the procedure of 
the proposed method. 
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Definition 2.1  
 

Let X denote an universal set that is X = {x} then the characteristic function which assigns certain values or a membership grade 
to the elements of this universal set within a specified range[0,1] is known as the membership function and the set thus defined is 
call a fuzzy set.  The membership grade correspond to the degree to which an element is compatible with the concept represented 
by the fuzzy set.  If   μ

��
   is the membership function defining a fuzzy set   Ã then µÃ : x→[0,1] where  [0,1] denotes the interval of 

real numbers from 0 to 1. 
 

Definition 2.2  
 

A trapezoidal fuzzy number Ã = (a1, a2, a3, a4) is defined by the membership function 
 

µÃ(x) = 

⎩
⎪
⎨

⎪
⎧

����

�����
     ;    ����  ≤ � ≤ ��

1             ;   ��  �� ≤ � ≤ ��

    
����

�����
 ;       ��  �� ≤ � ≤ �� 

           0       ;       ��ℎ������                
             ⎭

⎪
⎬

⎪
⎫

 

 

Definition 2.3 
 

A ranking function R: F(R) → R which maps each fuzzy number into the real line.  F (R) denotes the set of all trapezoidal fuzzy 

number.  If R be any linear ranking function, then     R (Ã) = a2+ a3 + ½[(a4 + a1) –(a3 + a2)]. 
 

Definition 2.4 
 

A System of fuzzy linear equations Ã� �    =  b�  is said to be fuzzy homogeneous constraint,   if   b� = 0� , such a system always has 
the trivial solution   � �  = 0� .  
 

Arithmetic operations on trapezoidal fuzzy numbers 2.5 
 

If Ã = (a1, a2, a3, a4) and  ��  = (b1,b2,b3,b4) are trapezoidal fuzzy numbers then the  
 

 Image of Ã = ( -a4,-a3, -a2, -a1) 
 Ã + ��  =   ( a1+ b1, a2 + b2, a3+ b3 ,a4+ b4  ) 
  Ã – � � =  ( a1 - b4, a2 - b3, a3 - b2 ,a4 - b1) 
 If  λ is any scalar then  λ Ã = (λ a1, λa2, λa3, λa4),  if λ > 0  and   λ Ã =  (λ a4, λa3, λa2, λa1),   if λ < 0. 
  The multiplication of  Ã and �� is defined as  
 

Ãּס��  = [
��

�
(b� + b� + b� + b�),

��

�
(b� + b� + b� + b�),

��

�
(b� + b� + b� + b�),

��

�
(b� + b� + b� + b�) ], 

 
if R (��  ) > 0�     and  
 

Ã ּס ��   = [ 
��

�
(b� + b� + b� + b�) , 

��

�
(b� + b� + b� + b�),

��

�
(b� + b� + b� + b�) , 

��

�
(b� + b� + b� + b�) ], 

if R(�� ) < 0�   
 
The division is defined as  

 

Ã / ��  = [
���

��� ��� ��� ��
 , 

���

��� ��� ��� ��
,    

���

��� ��� ��� ��
, ���

��� ��� ��� ��
],�� R� ��  � > 0� ,R� ��  � ≠ 0�   ��� 

 

Ã / ��  = [
���

��� ��� ��� ��
 , 

���

��� ��� ��� ��
,  

���

��� ��� ��� ��
,   

���

��� ��� ��� ��
],�� R� ��  � < 0� ,R� ��� ≠ 0�. 

 
Notations 2.6 
 
Let us denote the zero fuzzy number  0�  and unit fuzzy number 1�  as follows 0�  = (-2,-1,1,2), 1�  = (-1,0,1,2) and ��� denotes fuzzy 
identity matrix. 
 
Fuzzy linear fractional program with fuzzy homogeneous constraints in trapezoidal fuzzy numbers 
 
In this section, we can discuss fuzzy linear fractional programming  problem  as  in (Nachammai, Al. and Thangaraj, 2012),  
development of  a  transformation matrix and relationships between original problem and transformed problem   as given in 
(Mohan and Sekar, 2014). 
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Fuzzy linear fractional programming problem 3.1 
 
Consider a FLFPP with homogeneous constraint is 
 

Maximize � �    = 
���� � 

��� � �
                                                                                                                                                             ….. (3.1.1) 

 

� ������� ��  � �  ��  �   ��

����   ������ ��  ������ ��  ���� �� ��  … .�  ������� �  … � ��������  … ..�  ������� �  ��,��� ����  �
�                                                                                   …….(3.1.2) 

              and        ��  ≥ 0� . 
 
with the additional assumption that the denominator positive for possible solutions. 
 
Development of the fuzzy transformation matrix 3.2 
 
We develop the fuzzy transformation matrix which is similar to [Mohan and Sekar, 2014]. 
 
From     (3.1.1) –( 3.1.2),  �� = ( �̃1, �̃2, �̃3, …�̃n ) is a row vector with n  trapezoidal fuzzy numbers , ��  = (��ij )  is a trapezoidal fuzzy 

matrix with m rows and n columns.  Also ��ij,,�̃i and �� i are trapezoidal fuzzy  numbers.  We Partition trapezoidal fuzzy matrix as 
� � = (� � �,� � � ,� � �). � � � is the set of all column of � � whenever  ��ij = 0� .  Let r be the number of column  � � � . � � �  is the set of all 
column of � � whenever  ��ij >  0� .  Let p be the number of column .  � � � is the set of all column of � � whenever  ��ij <  0� .  Let q be the 
number of column � � � .  Thus p + q + r = n which is order of trapezoidal fuzzy  identity matrix .  It is denoted by  ��

� .  We define 

trapezoidal fuzzy transformation matrix ��  as ��� �  ��� � such that the ith  equation of �� ����    =  �� will be 0� .  Here ��  is a column 

vector with pq+r components.  This is accomplished by defining variables  � �kl  for each pair ( k,l) such that �� � � � � � and �� � � 

� � �.Now partition � � = (���:���),  where ���consist of unit trapezoidal fuzzy column vector ��̃ corresponding to ��ij = 0�.  ���consist of 

pq trapezoidal fuzzy column vector ��̃ corresponding to wkl..  The trapezoidal fuzzy transformation matrix � � can be represented as  

�� = [ (��̃ ),∀ j���ij = 0�; (�̃��), ∀ k�� � �  , ∀ l�� � � ].  That is (��̃ ) is the jth column of trapezoidal fuzzy identity matrix ��
�  and 

 �̃�� =  − �� il�k̃ +  ��ik�l̃. 

 

Transformed problem and relationships  3.3 
 
we use the transformation  �� =   ����  , we define the transformed  problem associated with the FLFPP (3.1.1) – (3.1.2).  
 

Maximize � �    = 
� ����� �  �  

� �  ��� � �  �
                                                                                                                                                ……….. (3.3.1)                                                                               

 

Subject to �� ����    =  ��                                                                                                                                                     ……….(3.3.2) 
                        and        ��   ≥ 0� . 
 
Relationship (i)  If  �� solves (3.1.2) then there exists a ��  (�� =   ����) which solves (3.3.2). 
 
 Relationship (ii) If  �� * solves the FLFPP (3.1.1) – (3.1.2) then  ��* (��* =   ����* ) solves the  FLFPP (3.3.1) – (3.3.2). 
 
Relationship (iii)  If  ��*  solves the  FLFPP (3.3.1) – (3.3.2), then there exists ��* =   ����*     
which solves the FLFPP (3.1.1) – (3.1.2) ; and the extreme values of the two objective functions are equal. 
 
Numerical example 
 
Consider a FLFPP with fuzzy homogeneous constraint in trapezoidal fuzzy numbers as follows 
 

Maximize � �    = 
(��,�,�,�)��� � (��,�,�,��)��� 

(��,�,�,�)��� � (��,�,�,�)��� � (��,�,�,�)
                                                                                                                   …..…(4.1)    

                                                                                  
Subject to  (-1,0,1,2)��� +   (-1,0,1,2)��� + (-1,0,1,2)���  = (-7,3,5,7)                                                                                     ….......(4.2) 
 
(-2,1,3,4)��� +   (-1,0,1,2)��� + (-1,0,1,2)���  = (-9,4,7,10)                                                                                                      ….….(4.3) 
 
 (-1,0,1,2)��� +   (-2,-1,0,1)��� + (-2,-1,1,2)��� + (-2,-1,1,2)��� = (-2,-1,1,2)                                                                           ……..(4.4) 
and   ���, ���,���,���  ≥ 0� . 
 

It’s standard form is  
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Maximize � �    = 
(��,�,�,�)��� � (��,�,�,��)��� 

(��,�,�,�)��� � (��,�,�,�)��� � (��,�,�,�)
                                                                                                             …………(4.5)       

                                                                               

Subject to  (-1,0,1,2)��� +   (-1,0,1,2)��� + (-1,0,1,2)���  = (-7,3,5,7)                                                                                 ………...(4.6) 
 

 (-2,1,3,4)��� +   (-1,0,1,2)��� + (-1,0,1,2)���  = (-9,4,7,10)                                                                                                 ………..(4.7) 
 

 (-1,0,1,2)��� +   (-2,-1,0,1)��� + (-2,-1,1,2)��� + (-2,-1,1,2)��� = (-2,-1,1,2)                                                                        ………..(4.8) 
 

and               ���, ���,���,���  ≥ 0� . 
 

Here (4.8) is a homogeneous constraint.  Since according to section 3.2 , we have 
 

� � = [�0�,0��:�1��,�1��], where p=1,q = 1 and r =2. This implies n= p+q+ r = 4. 
 

���=�

(− 1,0,1,2) (− 2,− 1,1,2) (− 2,− 1,1,2) (− 2,− 1,1,2)

(− 2,− 1,1,2) (− 1,0,1,2) (− 2,− 1,1,2) (− 2,− 1,1,2)
(− 2,− 1,1,2) (− 2,− 1,1,2) (− 1,0,1,2) (− 2,− 1,1,2)

(− 2,− 1,1,2) (− 2,− 1,1,2) (− 2,− 1,1,2) (− 1,0,1,2)

� 

 

�̃kl = -��il�k̃  + ��ik�l̃ 

  �̃kl =    -(-2,-1,0,1)�

(− 1,0,1,2)

(− 2,− 1,1,2)

(− 2,− 1,1,2)

(− 2,− 1,1,2)

� + (-1,0,1,2) �

(− 2,− 1,1,2)

(− 1,0,1,2)

(− 2,− 1,1,2)

(− 2,− 1,1,2)

� = �

(− 1,0,1,2)

(− 1,0,1,2)

(0,0,0,0)

(0,0,0,0,)

� 

 

From these    ��  =          

⎣
⎢
⎢
⎢
⎡

(− 2,− 1,1,2)     (− 2,− 1,1,2)    (− 1,0,1,2)   

 (− 2,− 1,1,2)     (− 2,− 1,1,2)    (− 1,0,1,2)   
(− 1,0,1,2)        (− 2,− 1,1,2)       (0,0,0,0)  

 (− 2,− 1,1,2)       (− 1,0,1,2)       (0,0,0,0) 
  ⎦

⎥
⎥
⎥
⎤

 

 

The above problem (4.5) – (4.8) transformed in to the problem below with fewer (two) constraints 
 

Maximize � �    = 
(���,�,�,��)��� 

(��,�,�,�)��� � (��,�,�,�)
                                                                                                                                      …….(4.9)                                                                                    

Subject to  (-1,0,1,2)��� +   (-2,-1,1,2)��� + (-2,0,2,4)���  = (-7,3,5,7)                                                                                   ……(4.10)  
 

(-2,-1,1,2)��� +   (-1,0,1,2)��� + (-3,1,4,6)���  = (-9,4,7,10)                                                                                                     …..(4.11) 
 
��� ,  ��� ,��� ≥ 0�. 

 

Iteration Table 1 
 

 ��j (-2,-1, 1,2) (-2,-1, 1,2) (-11,5,9,13) Minimum  �� 

��j (-2,-1, 1,2) (-2,-1, 1,2) (-2,0,2,4)  

���� ���� ���� ����  �� 1 �� 2 �� 3 

(-2,-1, 1,2) (-2,-1, 1,2) ��1 (-7,3,5,7) (-1,0,1,2) (-2,-1, 1,2) (-2,0,2,4) (-7/2,3/2,5/2,7/2) 
(-2,-1, 1,2) (-2,-1, 1,2) ��2 (-9,4,7,10) (-2,-1, 1,2) (-1,0,1,2) (-3,1,4,6) (-9/4,1,7/4,5/2) 

�̃(�) = 0 �̃(�) = (− 1,0,1,2)  ��j-�� j (-2,-1,1,2) (-2,-1,1,2) (-13,-9,-5,11)  

 ��j-�� j (-2,-1,1,2) (-2,-1,1,2) (-4,-2,0,2) 

∆� (-2,-1,1,2) (-2,-1,1,2) (-13,-9,-5,11) 
 

Since there is one ∆� ≤ 0�  .  Therefore, we go to next iteration.  Here ��2 leaves from the basis and  ��3 enters in to the basis. 
 

Iteration Table 2 
 

 ��j (-2,-1, 1,2) (-2,-1, 1,2) (-11,5,9,13) 

��j (-2,-1, 1,2) (-2,-1, 1,2) (-2,0,2,4) 

���� ���� ���� ����  �� 1 �� 2 �� 3 

(-2,-1, 1,2) (-2,-1, 1,2) ��1 (-12,
��

�
,3,

��

�
) (-2,

��

�
,

�

�
,3) (-3,

��

�
,1,

�

�
) (-5,-2,

�

�
,,

��

�
) 

(-11,5,9,13) (-2,0,2,4) ��3 (-9/4,1,7/4, 
10/4) 

(-1/2,-1/4, 
1/4,1/2) 

(-1/4,0,1/4,1/2) (-3/4,1/4,1,3/2) 

�̃(�) = (−
33

2
,
15

2
,
27

2
,
39

2
) 

�̃(�)

= (− 4,0,4,8) 

 ��j-�� j (-2,-1,1,2) (-11/4,5/4,9/4,13/4) (-22,-4,4,22) 

 ��j-�� j (0,0,0,0) (-1/2,0,1/2,1) (-6,-2,2,6) 

∆� (0,0,0,0) (-71/4,-27/4, 17/4, 81/4 ) (0,0,0,0) 
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Since all ∆� ≥ 0�  .  Therefore, we reached the optimum solution. 

 

Therefore    Maximum  � � = �−
��

�
,

��

�
,

��

�
,

��

�
�  �ℎ�� ��1= (-12,

��

�
,3,

��

�
) ��� ��3 =  (-9/4,1,7/4,10/4). 

 

The solution of the original problem, ( � �  = � � � �), is 
 

�

���

���

���

���

�   ==          

⎣
⎢
⎢
⎢
⎡

(− 2,− 1,1,2)     (− 2,− 1,1,2)    (− 1,0,1,2)   

 (− 2,− 1,1,2)     (− 2,− 1,1,2)    (− 1,0,1,2)   
(− 1,0,1,2)        (− 2,− 1,1,2)       (0,0,0,0)  

 (− 2,− 1,1,2)       (− 1,0,1,2)       (0,0,0,0) 
  ⎦

⎥
⎥
⎥
⎤

 �

�− 12,
��

�
,3,

��

�
�

(0,0,0,0)

(− 9/4,1,7/4,10/4)

�            =      

⎣
⎢
⎢
⎢
⎡
(− 9/4,1,7/4,10/4)

(− 9/4,1,7/4,10/4)

�− 12,
��

�
,3,

��

�
�

(0,0,0,0,) ⎦
⎥
⎥
⎥
⎤

   

 

Therefore, the solution of the original problem is Maximum  � � = �−
��

�
,

��

�
,

��

�
,

��

�
�  �ℎ��  

 ��1=   ( − 9/4,1,7/4,10/4),��2 =  (-9/4,1,7/4,10/4), ��3= �− 12,
��

�
,3,

��

�
�and ��4= (0,0,0,0). 

 
Conclusion 
 

The process, described in section 3, can be extended to define  ��  if  � �  ��   =   �� has more than one homogeneous constraint.  In 
case there are s homogeneous constraints, we define s transformation matrices ��(1),��(2),��(3)……��(�).��(2)  is determined 
once    � � ��(1) has been computed.  In general ��(�)is determined  only when � � ��(1) ��(2) ��(3)……��(� − 1) has been computed.  
This method reduces the number of constraints. 
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