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INTRODUCTION

Definitions:

(i)The generalized Hurwitz-Lerch Zeta function is defined by [2, p. 100, eq.(1.5)]; (see, eq. [1, p.27, eq. 1.11 (1)]; see also [5,
p.121] and [6, p.194]).

(a1 2)™

(@S © T (1.2)
|z]| < 1,Re (a) > 0, Re (a;) >0

or®(a,z,s,a) = Yoeo

(ii)Integral representation of the Generalized Hurwitz-Lerch Zeta function ®(z, s, a)(see, eq. [1, p. 27, eq. 1.11 (3)]; [2, p. 100, eq.
(1.6)]; see also [6, p.194, eq. 2.5 (4)] is given by

1 0 ts—le—at

F05 0 o (1.3)

d(z,s,a) =

1 0 ts—le—at

orCD(alz,s,a) Iﬁ 0 m ........................................................................................................... (14)
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(iii)The generalized Hurwitz-Lerch Zeta function defined in (1.1) reduce to Riemannian Zeta function{(s) for z = 1, the Hurwitz
(or generalized) Zeta function {(s, a) and Lerch Zeta function £4(&) defined by (see, for details, [1, Chapter I]; [5, Chapter 2]; and

[1, p. 27, eq. (1)].

2(s) = z;f:o(le; DL, 8, 1) RE(S) S L v e e, (1.5)
{(s,a) = z;:;;oﬁz D(L, S, @);(RE(S) 3 158 € CNZG) e (1.6)
and?,(§) = ¥, ?::)? P(€2™5,5,1); (RE(S) > 138 € R), wevreeiiiiieeeeiii et (1.7)

(iv)The integral representation of Riemannian Zeta function [1, p. 32, eq. (1)].

1 Oots—le—at
r's)’o 1-e7t

i(s,a) =

Re(s) > 1, (&) >0

(v)The Gamma function defined by [3, p. 884, eq. 8.312 (2)]
Jo e ldx = 2

Results Required

The following results are required here
(1)The Gamma function is defined by [3, p. 884, eq. 8.312 (2)]

I'(n) = a® fom X278 dx, RE(X) S 0,703 0.rneie e (1.10)

(i1)The sum of finite and infinite geometric progression are also required

(see, [3,p. 1,eq. (0.112); p. 8, eq. (0.231) (1)].

Main Results

We have established here the following five results, these results presents the different forms of integral representations of
Generalized Hurwitz — Lerch Zeta function.
Result — 1:

1 roo tS—lg—at

TI(s)”0 1—alze’f(1 — (alz)(r+1)e—(r+1)t)dt+
Re(s) > 1,]z| < 1,Re(a) > 0,Re (a;) > 0

1 oo tS—le—at

r(s)’0 1-a,ze-t

®(a,z,5,a) = (@ 2) e T+Ddt 2.1

In particular

_ _ 1 petTTlemd (r+1) ,—(r+1)t 1 (eotTSTtem® r+1,—(r+1)
®(a,z,—s,a) = = Js P— (1-(a,2) e )dt+r(—s) Js F— (a;z)"*e At (2.2)
Result — 2:
— L otTleT® (r+1) p—(r+ 1)t e tiTlerd Tl —(r+1) (] _ k gkt
CD(alz,s,j)_—tr(s)fo 1—a1ze—f(1 (a,2) e )dt+r(s) Js F— (a,z) e (1 = (a1 2)*e *)dt +
L )Tk L ek D) G 2.3)

I(s)”0 1-aqze~t
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Provided that, Re(s) > 1,|z| < 1,Re(a) >0,r € Z, k€ Z*
In particular

o t—S-1p—at

®(a,z,—s,a) = L fo

o) t—S—le—ﬂ.t

(1 = (ay2)T Ve~ +Dqe 4 [ (a,2) e V(1 — (ay2)* e *)dt +

r'(-s) 1-aq ze™t r(-s)70 1-aqze~t
1 pootTSlem r+ke+1 ,—(r+k+1)
- N P (a,2) e A o 2.4
Where Re(s) < —1
Result — 3:
k(k+1) _ k(k+1)

o (a12)” 2 cootsle (o5 (k+1) , —(k+1)t
®(a,2,5,0) = B0 s Jy P (1 - (a,2)* Ve Y (2.5)
Re(s) > 1,|z| < 1,Re(a) > 0,
In particular

( )k(k2+1) —— _{ +k(k2+1)}t
_ 0 a1z oo e k —(k
®(a,z,—s,a) = Yirry 11_(_5) Js Pl (1= (a;2)* Ve~ FDONGL i (2.6)
Where Re(s) < —1
Result — 4:
. L o tSTle—at (a12) o ts—le—(a+1)t
®(a,z,s,a) = o b et N Tolaz7a 28 G oo (2.7
Re(s) > 1,|z| < 1,Re(a) > 0,
In particular
. 1 o t—STle—at (a12) oc)t.—s—le—(a+1)t

®(a,z,—s,a) = - Js T U T Js Tl a a0 QL e (2.8)
Re(s) < —1,|z| < 1,Re(a) > 0,
Result — 5:

1 o $s—1 —(a+kp)t( )kp _
P(a17,5,a) = 5 Zk=o el_alze_flz (1= (@12)PPEYAL oo (2.9)
Re(s) > 1,p€z™,|z| < 1,Re(a) >0,
In particular

1 © t—s—1 —(a+kp)t( )kp _

P(@12,~5,0) = 1 B0 qmaomt o (1= (@2)PTP)AE o (2.10)

Where Re(s) < —1
Prof of (2.1) and (2.2)

To prove the result in (2.1) we have the generalized Zeta function defined in (1.2)

(a,2)"

d>(alz,s, a) = m
n=0

It can be written in the following form

_ (a12)" o (a12)"
®(a,z,s,a) = Yh_, (a-ll—n)s + ¥ (a-l}—n)s .............................................................................................. (2.11)
On using the definition of Gamma function and changing the order of summation and integration, we have
1 co  _ _ _ 1 o _ — 0 —
®(a,z,s,a) = o do € atgs=1fyr_(a;z)"e ™} dt + ﬁfo e attsTHye (@ 2)"e™Ydt (2.12)

On summing the inner series in view of (1.11) and (1.12), we at once arrive at the desired result in (2.1). The result in (2.2) is
obtained on replacing s by —s in (2.1)
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Prof of (2.3) and (2.4)

From result of (2.1)

o (@2 1 o tSTlemdt (r+1) ,-(r+1)t
"=0 aany = 73 Jo —1_‘1128_[(1 (a,2)" Ve DA o (2.13)

In the same way as the proof of (2.1), we have

rik T _ ke COT (9 0ol SN G (2.14)

n=r+1 (a+n)$ = 4an=r+1 I'(s)

Changing the order of summation and integration than using the result in (1.11) we have

rek (@2)" 1 cetSTle(gy)THemrDE P
n=rHL (@4n)s T I(s) Y0 T-—a,zet (1= (a12)e™R)AL oo (2.15)
And
(@) _ (alz S
= t5" e dt
(a+n)* I'(s)
n=r+k+1 n:r+1 0

Changing the order of summation and integration, we have

(alz)n —atss—1 n_,—nt
(a+n)5_l"(s)f t { Z (@,2)" }

n=r+k+1 n=r+k+1
on using the result in (1.12)

(aiz)" 1 00ts—1e—at(alz)(r+k+1)e—(r+k+1)t

(o]
Lnsreke (a+n)S  T(s)”0 1-a,ze~t

We have (2.3) after summing (2.13), (2.15) and (2.16) since

vanso=(Yr Y+ 3 )

=0 n=r+1 n=r+k+1
(rezi)kezt

The result in (2.4) is obtained on replacing s by —s in (2.3)
Prof of (2.5) and (2.6)

In the right part of (1.1) put n=0 and using of definition of Gamma function we get

1 _ 1 (® —ates-1
——mfo L A PP (2.17)

aS

And

(a,2)" Wz (a,2)*
~(a+n)* (a+1) (@+2)
2 o] (o)

2

(alz)n — 42z e—(a+1)tt5—1 dt + (alz) f e—(a+2)tts—1 dt
] (a+n)s T(s) I'(s)

= 0 0

t

[oe]
(a;2)™* a,z 1+a.ze”

— (a+n)s T I(s) )

e~ (@tDtgs—1 { } (1—a,ze H)dt

1—a,zet

. _ 2,-2t
yz_ o’ mz e (@t Dtpst (LDE kG 2.18)

(atn)S  T(s)~-0 1-a,ze~t
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Similarly
5 (@2)" _ (a2)? e—(a+3)tys—1 (1~ (a12)3e 73t
Thes o = - [ i p F At o (2.19)
9 (a2)" _ (a12)* —(a+6)tps—1 [1-(ar12)*e™*"
e N A e proe Fdt o (2.20)
And so on for a > 0 and Re(s) > 1, then after the summing up (2.19) and (2.20) on wards. We get (2.5)
Since
0 2 5 9 n
®d(a,z,5,a) = Z+Z+Z+Z+ (alz)
! (a +n)s
=0 =1 =3 =6
The result in (2.6) is obtained on replacing s by —s in (2.5)
Prof of (2.7) and (2.8)
To prove the result in (2.7), we can be written (1.2) in the following form
—_ co (alz)zm oo (a12)2m+1
®(a,z,5,a) = Ym0 (arzmy + Dim=o G am D) o (2.21)
On using (1.10), we have
I~ - 1 oo _ -
®(a,z,s,a) = Xw_o(a;2)*™ = )f e~@rzmiys=1 ge 4 30 (a,z)?™H — ) Jo e @rEmENLEST dE (2.22)
Changing the order of summation and integration
®(a,z,5,a) = F(s) ety (a,ze™H)?™MYdt + — o f e STy (ayze DM dE (2.23)
On summing the inner series in view of (1.12), we at once arrive the desired result in (2.7)
The result in (2.8) is obtained on replacing s by —s in (2.7)
Prof of (2.9) and (2.10)
To prove the result in (2.9), we can write
p-1(@2)" _ P 1(a12)" e—(@tm)tys—1
Yro Pk Yoo o Iy e teSThdE (2.24)
Changing the order of summation and integration and after using (1.11), we have
p-l(@a)" 1 (% _gp,s-1 1-(ayze™)”
Y=o @y — 1w Jo t { aize~t A (2.25)
Similarly
2p-1 n [e9]
(a,2) — (alz f e—(@+mtys—1 g
(a+ n)s I'(s)
=p n=p 0
2p—-1 (a12)" 1 _ 1 (e2p-1 _
i (ain)s =5 e ST (@128 )M A i (2.26)
On using (1.11)
—t\P
2p-1 (@12)" _ —(a+p)tss—1 (a2)P[(1~(asze™") ]
pomi = TE f e t r—— Qb e (2.27)
And

n=2p (gn)s  T(s) 1-aize~t

g _ 1 (arap)eys- 1{(“12)2p[(1‘(“1ze_t)p]} B oo (2.28)
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By induction, we know that the (k+1)th summation is

- 0 1-a ze™t

1 (@)™ w (@12)¥P[(1-(asze™*)"
S s = s e‘(‘“k”)tts‘l{alz (1-(ayze )]} BE oo, (2.29)

For Re(a) >0,k e Zf,pe z*

After the summation up to (2.25)~(2.29), we get (2.9) under the conditions.
The result in (2.10) is obtained on replacing s by —s in (2.9)

Special Cases

(DIf in (2.1) to (2.10), we take z=1 and a,;=1, then these results provided the known integral representations of generalized
Hurwitz Zeta function {(s, a) respectively [4, pp. 9-95, egs. (3), (4); (12), (13); (20), (21); (28), (29); (32), (33)].
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