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The study is about developing a class of line search exchange algorithm for solving linear programming problem 
using an experimental design procedure. The new algorithm, namely, minimum exchange algorithm has been 
developed and a first necessary condition for the existence of an optimizer of a linear programming problem has 
been obtained. This algorithm has been shown to converge. Numerical illustration and comparison show that the 
algorithm compares favourably with the simplex method for solving linear programming problems. 
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INTRODUCTION 
 
The concept of an experiment is brought to focus in investigation to 
discover something about a particular process or to compare the 
effects of several conditions on some phenomenon.  Experimental 
design refers to the process by which an experiment is planned so that 
the appropriate data are collected and analyzed using statistical 
methods to achieve valid and objective conclusion Montgomery 
(1976).  The statistical approach to experimental design is necessary 
if we wish to draw meaningful conclusion from the data.   
Experimental design is concerned with detailed methods of carrying 
out an experiment in order to achieve maximum desired response 
objective.  There are two aspects to any experimental problem, the 
design of the experiment and the statistical analysis of the data.  
These two subjects are closely related, since the method of the 
analysis depends directly on the design employed.  In experimental 
design, we have three methods of design, namely, randomized design, 
factorial design and response surface design. In this study we are 
using the response surface design method in solving our problem 
 
RESPONSE SURFACE METHODOLOGY 
 
Response surface methodology [RSM] is a sequential procedure and 
it offers effective means for using experimental design principles to 
determine the optimizer of the real-valued function.  Response 
surface methodology is a collection of mathematical and statistical 
techniques used in analyzing  problems where several  independent  
variables  (or factors)  influence the value of dependent response  
(F(x)) and the primary goal is to determine the value of the 
independent variable that maximize (or minimizes) the response. 
Response surface methodology is one of the important branches of 
experimental design and is a critical technology in developing new 
processes and optimizing their performance. Its objective is for 
quality improves including reduction of variability and improvment 
process and production performance. Onukogu (1997) states that 
response surface methodology can be seen as a bridge linking the 
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subject of experimental design with the subject of our constrained 
optimization.  Myers and Montgomery (1995). states that response 
surface is a mathematical and statistical techniques useful for 
optimizing the stochastic function. Response surface methodology is 
extremely useful as an automate tool for model calibration and 
validation especially for modern computational multi-agent large-
scale social network system that are becoming heavily used in 
modeling and simulation. The most extensive application of the 
response surface methodology is in particular situation where several 
input variables potentially influence some performance measures or 
quality characteristics of the process.  The performance of the quality 
characteristics is called the response. The input variables are 
sometimes called the independent variables and they are subjected to 
control by the experimenter.  There is a problem faced by the 
experimenters in many fields where in general  the  response  
variables of interest is  Y, and  there is a set of  predictor  variables  
X1 ,X2 ,…,Xn, identifying  and fitting  from experimental  data an  
appropriate  response surface model  require some use of statistical 
experimental design fundamentals regression modeling techniques  
and optimization  method. These three topics are usually combined 
into response surface methodology. In some response surface 
experiments there can be one or more linear dependence among 
regressor variables in the model. 
 
The use of experimental design methods to solve unconstrained 
optimization problems is well established that the topic which is 
usually called Response Surface Methodology (RSM) has become a 
permanent feature in every important text on design of experiments. 
The aim is to determine the value of the independent variables that 
maximizes (or minimizes) the response. We denote the independent 
variable by  x1, x2, . . . xn, and assume that these variables can be 
controlled by the experimenter with negligible error.  The response 
function, f (x), which is usually unknown, is represented by a 
regression function, y(x), with additive error, thus we write. 
 
Y(x)  =   f( x1 ,x2 ,. . .,xn)  +  e …(1) 
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where e  is the random error , f( x1 , x2, . . .,xn) is called the response 
surface.  The problem is to find the local optimizer, x*; i.e.  The 
levels of the factor  
 
 X*  =  ( x1*, x2*, . . . ,xn*) such that for every  x 
 
F(x*)    ≥ f(x) if  f(x)is to be maximized 
            ≤  f(x) if  f(x)  is to be minimized. 
 
 
The prime ()  indicates the transpose of a vector or matrix x is any 
combination of the level of the factors. Besides locating the 
optimizer, response surface methodology also deals with exploration 
of the surface around the optimum point. The aim is to gain a better 
understanding of the optimal region and, if possible, determine the 
alternative optima that could be technically or economically more 
feasible than the one first found. The problem is to seek the various 
ways of locating the optimizer of response surface.  Once this aspect 
of response surface methodology is well grounded then the problem 
of exploring within the optimal sub- region will be made easier.  
There are dozens of exploration techniques. The development and the 
application of these techniques are influenced by three general 
conditions. 
 
 The nature of the response; whether it is nominal or quantitative. 
 The factor or variates; whether they are quantitative or 

qualitative or mixed. 
 The nature and magnitude of errors; whether it is largely 

systematic i.e. if it is due to randomness or bias, or both. 
 
One of the difficulties with nominal response is that the search cannot 
ordinarily be gradient-based since the gradient is not defined; rather, 
the search is often directed along the path of increasing (or 
decreasing) response value.  In this study we are using a line search 
algorithm in solving linear programming problem.    
 
LINE SEARCH TECHNIQUES 
 
The aim of any search scheme is to maximize performance .i.e. to 
locate the optimum of the response surface with the fewest number of 
iterations and minimum amount of computation at each iteration. To 
get this, it requires the best decision on. 
 
1.The starting point of the sequence. 
2.The regression model 
3.The design of experiments 
4.The direction of the search. 
5.The step-length each of which can seriously affect the performance. 
 
Besides the size of the response error and the nature of the 
experimental factors, these are generally not under the control of the 
experimenter.  Often the value of one factor constraints the other .i.e. 
.the value of the step-length depends on the direction vector. It is 
therefore necessary to look at how these factors collectively affect 
performance and the best way each should be determined some of the 
more recent line search technique that are capable of locating the 
local optimizer of response surface methodology problem in just one 
move has been reported by  Onukogu (1996) and Onukogu and Esele 
(1987). 
 
The line search equation 
 

 
 
Where xi  =  ( xi1, xi2,. . . ,xin)1 is the starting point of the sequence,  

   =   ( di1 , di2,. . ., din) is the direction of search and ρi  is the step-
length. 
The line search equation has over the years taken variety of form 
depending on the direction vector, 

 
    

 
Where Ti is a matrix of transformation, gi is the gradient vector at the 

jth step,    when T = I an identity matrix.  The algorithm 
used in this study makes use of the three basic iterative steps of a line 
search procedure 
 
(a) To determine the direction vector di and the step-length, ρi at x ϵ 

,      is the space of all experimental trials. Perform an experiment 

to determine the direction of search, . 

Move to the point
  
ρi is the step-length. 

 
(b)  If x1 = x*,  the local optimizer, stop, otherwise  set 1  = 0  and 
return to step (a) above. 
 
There exist line search algorithms which are capable of reaching the 
local optimizer of regular unconstrained surface in one move .One of 
such algorithms is the   Minimum Variance Line Search Algorithm 
(MVA) Onukogu (1997).  For constrained optimization problems 
researchers often apply search techniques that are quite different from 
experimental design techniques.  However, this study evolved a line 
search algorithm for solving linear programming problems (LPP) a 
constrained optimization problem which makes use of the principle of 
optimal experimental design.  The new algorithm is known as 
Minimum Exchange Algorithm (MEA). 
 
THE MINIMUM EXCHANGE ALGORITHM 
 
The aim of this search is to locate the optimum of the response 
surface with the fewest number of iterations and minimum amount of 
computation iteration.   At first, some ideas are generated concerning 
which factor or variable that is likely to be important in response 
surface study. It is usually called the screening experiment. The 
objective of the factor screening is to reduce the list of variables to a 
relative few so that the subsequent experiments will be more efficient 
and require fewer tests. This is identification of the important 
independent variable.  Secondly, the experimental objective is to 
determine if the current setting of the independent variables results in 
a value of the response that is near the optimum. If the current 
settings or levels of the independent variables are not consistent with 
optimum performance, the experimenter must determine a set of 
adjustment to the process towards the optimum.                                                                     
 
LINEAR   PROGRAMMING    PROBLEM 
 
Linear programming problem is an optimization problem 
characterized by linear objective function   in non negative variables 
constrained by a set of m linearly independent equations.  Inyama and 
Osuagwu (1999) states that for every mathematical programming 
problem the objective function F(x) and constraint gi (x) , i =1, 2, . . . 
,n are always linear.    
 
A linear programming problem is defined as 
 

  
  

 
      …   (5) 

 
 
 
where  
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are constants. 
The matrix function 

Max (or Min) z =  …(6) 
Subject to            AX (≤ = ≥ ) b. 
Where           
                                      

  C is a column vector                                                       

                                                         

                                                                                               

                                              

b   is a column vector                                                                                          

                                                                

A is mxn scalar matrix                                               

                                                                                          
STATEMENT   OF THE PROBLEM 
 
There are several ways to reach the local optimizer of a response 
surface by making use of the gradient vector, but a good number of 
them are uncertain to converge. The problem is to get a better 
alternative optimal that could be technically or economically more 
feasible than the other. The first problem is to seek the various ways 
of locating the optimizers of the response surface.  The objective of 
the study is to seek a more convenient, cost effective and minimum 
way of locating the optimizer of a response surface. This the study 
wants to achieve, by using a line search algorithm in solving a 
numerically hypothetic linear programming problem in comparison 
with the simplex method approach and also determine the possibility 
of its convergence at  the fewest moves.  
 
SCOPE OF THE STUDY 
 
Within the time frame of this study, and the objective stated above  
the research trends to limit its scope at locating the optimizer of the 
response surface with the least number of iteration of the chosen  
problem at a given  minimum amount of computation. 
  
RESEARCH QUESTIONS 
 
1.How can we get a method that will be more convenient and of less 
computation in locating the optimizer? 
2. Can this algorithm be applied on more complicated problems? 
3.     When compared with other algorithms, can you say that this 
algorithm is more convenient? 
4.   Does the algorithm have a convergence point? 
 
LIMITATION OF STUDY 
 
Line search algorithm was used in solving a linear programming 
problem in this study. Although the study was a success, but it was 
not without some challenges. Difficulties were encountered in 
choosing the first point to move, at getting the local optimizer. Also, 
given that it is relatively new approach in solving linear problems in 

the world of computing, there was the problem of accessing good 
literature.  
 
DEFINITION OF TERMS 
 
1.  FEASIBLE SOLUTION:  All the solution of a linear 
programming problem that satisfy all the constraints. 
2.  FEASIBLE REGION: This is the set of all feasible solution. 
3.  OPTIMAL EXPERIMENTAL DESIGN:  It is an essential aspect 
of an experimental design which enables us to decide whether one 
design is better than the other. 
4.  DESIGN MATRIX:  This is the values of the initial constrain 
equation. 
 
MODELS AND THEORIES 
 
When interest of the experimenter is to locate the optimum of the 
response function.   RSM comes in play. The local minimize of a 

response surface is a point x* ., where  is a member of the 
triplet. i.e.  
 

F(x*)   = min f(x), x  . 
 
A fundamental procedure to obtain x* is by the line search equation. 
Suppose we denote the response by Y which is believed to depend on 
n independent variables or factors  x1, x2, . . . , xn which span a factor 
space s(x) and assume that these independent variables are controlled 
by the experimenter with negligible error.  We also assume that the 
response Y is a random variable with additive error.  Then we write 
 
Y(X) =  f( x1, x2 ,. . . ,xn θ) + e…(7) 
 
Where e is the random error and f(x1, x2 , . . . ,xn) is called the 
response surface, θ is unknown parameter. The problem is to find the 
local optimizer, x* i.e.  levels of  the factors  x* =  ( x*1, x*2 ,. . . 
,x*n)1 such  that for every x 
 
F(x*)       ≥ f(x) if f(x) is to be maximized 
                ≤ f(x) if f(x) is to be minimized… (8) 
 
 
Onukogu (1997) states the local optimizer 

          X* ,   … (9) 
where x*is the local optimizer,  is the space of the possible trial. 

             F(x); x   
 
Some of the questions relating to F(x) that may arise in the course of 
designing an experiment include, 
 
1.To estimate the value of θ or any subset or linear combination of θ. 
2.To determine x* for which f(x) assumes its optimum value. 
No matter the value of the response of an experiment it is desirable 
that the experiment be designed optimally. That is, to say, the 
experiment provides maximum information about functions of the 
parameter of the model. 
 
LITERATURE REVIEW 
 
The use of experimental design method to solve unconstrained 
optimization problem is so well established that the topic which is 
usually called Response surface methodology (RSM) has become a 
permanent feature in every important text on design of experiment. 
Onukogu (1997), states that response surface methodology can be 
seen as a bridge linking the subject of experimental design with the 
subject of unconstrained optimization. In a recent research by 
Umoren, it is made clear that it’s easy to extend this bridge to a 
constrained optimization as well.  That response surface methodology 
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can be used in solving constrained and unconstrained problem?  The 
field of the response methodology consist of the experimental 
strategy for exploring the space of the process or independent 
variables ,empirical statistical modeling to develop an appropriate 
approximating relationship between the yield and the process variable 
, an optimization method for finding values process variable that 
produces desirable values of the response.  The interest of the 
research work is among other things to; locate the optimizer of a 
linear programming problem - a first order response model.  
Response surface methodology also deals with exploration of the 
surface around the optimum point.  Montgomery (1976) states that 
the analysis of response surface can be thought as ‘First’ climbing a 
hill’ where the top of the hill represent the point of the maximum 
response, then we may think of descending into a valley. The 
climbing procedure of the response surface methodology guarantees 
convergence to a local optimum only. Since he said that convergence 
is often limited to a demonstration of the steepest ascent (descent) 
algorithm and, therefore, not comprehensive enough to meet the 
needs of a student whose interest is more on analytical results. 
Onukogu (1997) derived from analytical properties, one of such 
algorithm which is capable of reaching the local optimizer of regular 
unconstrained surface in one move. 
 
RESEARCHERS IN COMMON  
 
Onukogu(1997), employed  the use of Minimum Variance exchange 
Algorithm in solving unconstrained line search problems. While 
Umoren (1999) engaged the use of Maximum Norm Exchange 
Algorithm for solving constrained problems. Also Umoren (1996) 
used two methods Linear Exchange Line Search Algorithm and The 
Quadratic Exchange Line Search Algorithm in solving linear 
programming problem.  Tatsuyuki Amajo (2000) carried a research 
report on sizing optimization using response surface method on first 
order analysis. Presenting a sizing optimization method based on 
using first order analysis tools, design engineers can create good 
design candidate in the concept design stage, while analyzing 
physical properties of them simultaneously. That the order analysis 
offers optimal calculation techniques that encourage the use of sizing 
optimization. In first order analysis the use of an optimization 
techniques that based on response surface methodology that offer 
speed convenience as the size optimization. 
 
Response surface methodology in numerical Analysis 
 
The response surface is a type of optimization that applies an 
approximation technique to the objective and other function of an 
optimization problem.  In order to approximate, it uses a function 
called response surface.  The works of Box & Wilson (1951), actually 
brought to fore the use of this technique in attaining convergence by 
repeating numerical and sensitive analysis until the optimal solution 
is obtained.   A common measure of the information contained in any 
design is in the information matrix of the design defined by 
 
M(ξn)  =  ∫s(x) xx1λ(x) ξn dx 
 
For continuous (approximate) design and 
 
M (ξn) =   xϵs(x) ∑  xx1 ξn δ2

e,     M ϵ Mnxn 

 

For discrete (exact) design , where s(x)   is the experimental area, 
ξn is a design measure , λ(x) is assume to be known bounded positive 

real-valued continuous function on  and is commonly called the 
efficiency function. We note that the efficiency function reflects the 

heteroscedasticity structure in the model, but if λ(x) is constant on , 
we may assume without loss in generality that λ(x) = 1 and 
homoscedastic model (Wong, 1992). The continuous function λ(x) is 
equivalent to δ2

e for exact designs. We note that both the theory and 
in the construction of the optimum designs, it is convenient to replace 

the n trials design represented by the design matrix X by a measure 

over the design region  for n trial design, that is, one for which the 
weights at the experimental points are integer multiples of 1/n, the 
measure is denoted by ξn. If the integer restriction is removed the 
design is denoted by ξ and is referred to as an approximate design 
since it may not be exactly realizable in practice (Atkinson, 1982). 
Thus an experimental design is a probability measure ξn on a δ field 

of set , which include the one point set (Studden and Dette, 1993). 
 

Associated with the design problem is the triplet ( , Fx , ∑x ) 
together with the convex optimality criterion  function Ф which is 
selected to reflect the interest of the experimenter. The problem 
confronting the experimenter is how to select a design so that Ф is 
minimized. Designs which minimize Ф are called Ф- optimal design.  
 
The definition of the triplet, 

 =  (x) is the space of all possible trials, for an n- factor experiment 
x  is an n-component vector. Generally, some of the factors can be 
quantitative or qualitative but here we shall only consider quantitative 
factors 
 
Fx = [f(x)] is a space of finite dimensional continuous functions that 

can be defined in .   
∑x   = (δx

2)  is a space of non-negative, continuous random 

observation error which can be defined in . General, the values of 
δ2

x   vary from one x to another, but for the purpose of this work δ2
x 

shall be assumed to be constant for all x. 
 
(Wong, 1992) Indeed, an optimal design maximizes or minimized an 
appropriate function of the information matrix or its inverse (Studden 
and Dette, 1993). Usually, the direct search for an optimal design is 
difficult, hence it is always necessary for the experimenter to 
formulate the purpose of the experiment clearly and also choose an 
appropriate optimality criterion from the class of optimality criteria.  
One design criterion which has been much studied is that of D- 
optimality in which the determinant det(M(ξ)) is maximized. Another 
optimality criterion is the G-optimality which is applicable when the 
experimenter’s interest is on minimizing the maximum variance of 
the predicted response over the design region. If interest is on 
minimizing the sum of the variance of the parameter estimates, we 
speak of A- optimality, where as when interest is on maximizing the 
minimum Eigen value of M(ξ) , we speak of E-optimality.  In this 
study we are making use of the  Kiefer(1974) or  Atkinson(1988) type 
Ф optimality criterion which are formulated in terms of the 
information matrix, the objective being to minimize some functional 
of  M-1(ξ) over ξn.  A more detailed account of optimal experimental 
design can be found in some text books e.g. Pazman (1986), Atkinson 
and Donev (1992) and  Onukogu(1997). 
 
METHODOLOGY 
 
Introduction 
 
The problem is to locate the local optimizer, i.e. 

Minimize      x*  
                    Minimize  f(x) = c x 
Subject to   Ax = b 
                    x≥ 0 
we seek to locate a minimizer   x* = ( x1*, x2*, . . . ,xn* ) so that  

f(x*) ≤ f(x), x є  is the feasible region.  
Whatever form the constraints may take, a move is made from the 
center of a given initial design matrix X along a constant gradient 
direction and after a finite sequence of moves the algorithm leads to 

1096                 International Journal of Current Research, Vol. 5, Issue, 5, pp.1093-1100, May, 2013 
 



the optimizer of the LP problem.  It is shown in this work that the line 
search techniques which are useful in optimal experimental design 
can be modified and adapted in solving linear programming problem 
effectively. Thus to generate a class of line search algorithm that are 
capable of solving linear programming problem effectively and study 
the convergence properties of such technique provide the main 
motivation and objective for this research project.  Two commonly 
used line search algorithms for solving LP problems are the simplex 
method and Active set method. For some LP problems the simplex 
method and the active set method will require the use of artificial 
variables and artificial constraints, in such cases there will be 
computational demand in solving problems.  In addition, for 
inequality constraints, the simplex method requires the use of slack 
variables, thus requiring greater computer storage capacity. 
 
Furthermore, the simplex method is potentially an exponential time 
algorithm and simple examples exist that have some difficulty. It is 
therefore desirable to develop a new approach for solving LP problem 
that avoid the above difficulties. We implies a new algorithm                        
[Minimum Exchange Algorithm],  the exchange is made on the basis 
to get the minimum of the support points which form the initial 
design matrix; that is the support points which has the minimum 
exchange with the end point of the kth iteration.  In development of 
this new algorithm. We have to exploit some of the similarities 
between Response Surface Methodology RSM and linear 
programming problem LPP. These include 
 
(1)   Although RSM is usually classified as an unconstrained 

optimization problem, but in fact the independent variables can 
only take on values within a finite dimensional region which 
constraint the acceptable values of the response function. Thus 
the experimental region in RSM is indeed constrained and plays 
the same analytical role as the feasible region on LP problem. 

 
(2) Even-though the  independent variable in  RSM can take  on any 

value  and those of linear programming problem can only assume 
non-negative values both are usually considered to be 
quantitative, thus 

 
(3) The experimental region in RSM (or equivalent the feasible 

region linear programming) is a continuous, compact and a metric 
space. One particular interesting feature of the new algorithm is 
that all the constraints (≤  =  ≥ ) are treated as equality constraints, 
i.e.  ( = = = ). thus there is no need  for adding slack variables  as 
in  some other methods of solving LP problems, like simplex 
method. Whatever form the constraints may take, a move Is made 
from the center of a given initial design matrix X along a 
constraint gradient direction and after a finite sequence of moves 
the algorithm leads to the optimizer of the linear programming 
problem.   

 
Minimum Exchange Algorithm 
 
Some basic design principles underlying the development of the 
algorithm are: 
 
Firstly we do not require more than n, (n + 1 < n ≤ 1/2n (n + 1) + 1) 
support points for the initial design matrix needed for the 
commencement of the algorithmic operation; n is the number of 
variates in the gradient vector of the objective function. This is 
sustained by Pazman (1986) for equivalent designs. 
 
Secondly, Pazman (1986) has also shown that a design matrix with 
support points taken at the boundary of the experimental region is 
better than another design matrix with support points taken at the 
interior of the experimental region. 
The common structure in this algorithm is that it deletes a point Xmk, 
which is such that  

|| Xmk, || ≥| Xik, ||, i =  1,2, . . .,n  , i  

From the initial design matrix X, k = 1, 2, ...  And adds to it the point   
XK   , the end point of the kth iteration;   || Xmk, || ≥ || Xk,  ||  
The sequences of steps involved in minimum exchange algorithm are 
as follows. 

S1 ; at the boundary of     centered at  xk  =  ( 1k ,  x2k  , .  .  . ,  xnk .)  
take  n support for  the  design  matrix  i.e.                      
                                 

                      

1

2

k

k k

mk

nk

x
x x

x

x






               

 Such that det(xx)   n(n + 1 ) + 1. 

S2:     

X  = x/n, k = 1, 2 ,. . . 
d = (XX)-1 X1Y = b 
                                   -          

          

                           
s3,  the minimize, stop , otherwise replace  xmk in X with 
x*  to have 

            

         xk+1=  ,where   is such that

 , i  =  1, 2, . .  . , n,  i  
S4:  set k + 1 = k and return to step s2. 
 
The sequence terminates when ever any of the following conditions 
hold;           
    

(i)    

 (ii)   |x1
k M-1 xk  -  x 1M-1x| < δ ,  δ< 0 

(iii)  |x1
1
 M-1 x1 - x M-1X| <ϒ,  ϒ> 0. 

 
We note that the forward procedure of the algorithm is also 
applicable. 
 
In that case the sequence deletes from the design matrix X the point 
xmk which is such that 
 

 
     

And adds to it the point x*, the end point of the  iteration. This 
procedure is called the Minimum Exchange Algorithm since the 

exchange is made with  , a point of minimum, i.e.  
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The numerical demonstration reveals the following about the working 
of the algorithm. 
 
 The determinant of the information matrix decreases from 

iteration to iteration. 
 Each move takes the sequence from point Xk of relatively high 

d-function to a point of lower d- function. 
 At every iteration move is made from the centre of the design to 

the boundary of the feasible region 
 
The convergence of any sequence must show the following; 
 

1. Must show that the d-function at  iteration is greater 
than the d-function at the kth iteration. i.e. 

. 
 

2.That the determinant of the  iteration will be greater than the 

determinant of (k+1) iteration.  . 
 
Analysis and Results 
 
Demonstration of the procedure using a numerical example. 
 
Example:   4.1 
 
   

  

                                      

                                     

                                      
 
From the example above, the support points which constitute the 
initial design matrix are formed from the constrained equation, the 
points that satisfy the Constrained equations. Let X be the design 
matrix 
                         

                                

                             =                 
   

From our design matrix  we get our information matrix  
 

 

  

We normalize it by dividing   /2 
 

 

 

To get the b estimate or  
 

                   

           

      

 
                                                      

 
 

  

              

            

                   

               

                                             
      

    

                                                  

                                     
Using the line search equation,   
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A move is now made to  
 

  

  

 
      Using a line search equation, we substitute the values 
 

      

    

                
Subjecting the values of x*1 into the objective function. 
 
F(x*1, x*2) = f( 1.91, 2.19)  =  10.10 
We exchange the point (3.00 3.00) with (1.91 2.19) to get a new 
design 

                 

           

 

         

 
 

 

          

                 

                                    
Starting point is xk+1 = (1.73   2.05) and the step is calculated as 
before to be ρ2 = 0.1812  
 

    

     
Subjecting the values of x*2 into the objective function. 
 

 
We exchange the point  with 
to get a new design matrix.                                                      
                                 

              

    
         

                                                                                             

 

 

 
 

      

 
 

 

 
 
Subjecting the value of   into the objective function, 
 

 

 
 
Table 4.1:     The determinant of the information matrix at the kth 
iteration in   the Minimum Exchange Algorithm  
 
            iteration (k)                           det(Mk) 
                  1                                       117.25 
                  2                                         86.46 
                  3                                         79.94 
 
 
 
Table   4.2:   The d- function at the end point of the kth iteration of 
Minimum   Exchange Algorithm  
 
       Iteration k                     end point  xk                x1

k M-1k xk 

 

               1                                 1.91        2.19               0.44 
            2                                1.58        1.95               0.43 
            3                                1.40        1.90               0.40 
 
 
Comparison of performance of the minimum exchage      
algorithm    and the simplex method 
 
Solving Example 1.0 with simplex method, we got the following 
values for; 
 

  

 

 

 
 

 
           Put it in standard form.         
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                   Non- basic                  basic 

basic Z X1 X2 S1   S2   S3 b 
Z 1 -3 -2 0    0    0 RHS 
S1 0 (2) 1  1    0    0 6 
S2 0 1 1  0   1    0 4 
S3 0 1 2 0      0       1 6 
Z 1 0 -1/2 3/2    0      0 9 
X1 0 1 ½ ½     0        0 3 
S2 0 0 3/2 0    -1      0 7 
S3 0 0 (5/2) ½    0       1 (9) 
Z 1 0 0 7/5   0  -1/5 54/5 
X1 0 1 0 3/5   0  1/5 6/5 
S2 0 0 0 -3/5   1   3/5 8/5 
X2 0 0 1 1/5   0    2/5 18/5 

 
The optimal solution is   X1  =   6/5 =  1.2,    x2 =  18/5  =  3.6, When 
subjected to the objective function we have f (1.2  3.6)  Min f(x)=   
10.80 
 
Table 4.4:    Comparison of the result of Minimum Exchange 
Algorithm  Performance and the simplex method 
 
 Algorithm                        Value of minimize              Value of f(x)                       
 
MEA                                      1.40    I.90                              7.99       
Simplex method                    1.20   3.60                             10.80 
 
From the result, the minimizer of the Simplex method is 10.80, while 
that of the minimum exchange algorithm is 7.91.  Therefore the 
minimum exchange algorithm is more efficient in terms of its 
minimum value compared with the value of the simplex method.                
                                                     
Summary 
 
The problem of developing a class of exchange algorithm for solving 
linear problem using an experimental design procedure has been the 
main focus of this research project.  The totality of the report may be 
summarized as follows: 
 
The new algorithm: Minimum Exchange Algorithm. In developing 
this algorithm the similarities between response surface methodology 
and linear programming problem were exploited. Some similarities 
include the fact that both the experimental region in response surface 
methodology and the feasible region in linear programming play the 
same analytical role.  Both the objective function in linear 
programming and response function in response surface methodology 
problem are continuous non-stochastic functions defined in a finite 
dimensional space. 
 
We notice the following about the algorithmic operations of the 
algorithms referred to;       
                          
(a) The sequence moves from a point Xk of relatively high variation 
to a point Xk+1 of lower variation. i.e. 

 
 
Where M-1

k and Xk, are the information matrix and the end point of 
the iteration, respectively. 
 
(b) The determinant of the information matrix at the kth iteration, 
det(MK) is non-increasing function. 

(c)   That the decrease in the  produces a corresponding 
increase in d-function   Xk

1 M-1 Xk; i.e. the sequence 
is non – decreasing. 

 
(d) The sequence (Xk) k=1

∞ is bounded and has a limiting value Xc 
which has been shown to be not different from X* the minimize of 
F(x). 
 
Some optimality conditions to be satisfied by the minimize of a linear 
programming problem has be obtained: one of such conditions is that, 
If X* is a minimizer of the linear programming problem, then the d-
function of the objective function at X* is less than the d-function at 
any other point within the feasible region.  X*1M-1X* < X1M-1X 
 
A numerical comparison of the algorithm (MEA) with the simplex 
method, revealed that the new algorithm compare favorable than the 
simplex method.   
 
Conclusion 
 
Using the experimental design procedure this work has evolved a new 
algorithm namely; Minimum Exchange Algorithm for solving linear 
programming problem. The algorithm has been shown to converge 
compared with simplex method for solving linear programming 
problem.  We conclude therefore that using the line search algorithm 
in solving linear programming problem is more convenient to getting 
its minimum when compared with other algorithm. Also we 
discovered that the experimental design procedure is simple and gives 
a more minimal value than the other, like the simplex   method.   
 
Recommendation 
 
This study strongly recommends the use of line search algorithm for 
solving linear programming problem.   
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