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INTRODUCTION

Elastic curve problem have long research history. The mathematical theories of elastic curves go back to Bernoilli and Euler
(Goldstine, 1980). Elastic problem has been reinvestigated with different ways during the last three decades (Langer and Singer,
1984), (Gürbüz, 2007), (Barros and Garay, 2012). Barros and Garay derived critical points of the total normal curvature functional

ds
l

r
n

0

 in 3 dimensional space forms.  This problem have a lot applications. For example, the case r=2  is used in the self

assembly analysis of thin films formed by block copolymers in a cylindrical phase (Santangelo, Vitalli, Kamien and Nelson,
2007).  In this work, we obtain the critical points for the generalized total normal curvature on non-null surface in Minkowski 3-
space.  Our aim is to minimize the energy

ds
l

n
0

2 (1.1)

and to find equilibirium equations.

Let  denote an admissible curve on a connected oriented surface M in Minkowski 3-space. Apart from the Frenet frame {t,n,b},

there also exist a second frame {T,Q,N} at every point of the curve  . )(')( ssT  denote the unit tangent vector, N is the

unit normal to M  and 1,   TNQ and s is arc length.

The analogue of the Frenet-Serret formulas is
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where QTNST gnT  21

~  , g is the geodesic curvature, g is the geodesic torsion, n is the normal curvature,

~ is Lorentzian Levi-Civita ,  is Riemannian Levi-Civita, S is Weingarten map.  Also

321 ,,,,,   NNQQTT .

Intrinsic Method

Let MLtw  ],0[),(:),(  be a variation of non-null (space like or time like) curve . ),0(),0( t
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,VVv  is speed of  .  Non-null admissible curve is

critical point if and only if
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Arc α is called r-normal elastic line if it is an extremal for the variational problem of minimizing the value of (1.1) within the
family of all arcs of length L on a non-null surface in Minkowski 3-space.
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where W(0,0)=W(0,L)=0, 0),0()0,0(  LWW TT . L(w) is the arc length of  . Also,
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Here H is mean curvature and
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is Weingarten map non-null curves. Thus Euler- Lagrange equations is given by
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Thus from (2.2), ((2.3) and (2.4), we have
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Theorem 2.1.

An non-null admissible curve is r-normal elastic if and only if,
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Corallary 2.1.

An non-null admissible geodesic are is r-normal elastic if and only if it satisfies the following equations
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Corallary 2.2.

An admissible non-null geodesic arc  on non-null surface  is r-normal elastic if and only if , it satisfies

0)1(2 
g

r
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Proof. If surface is space like,

1,1,1 321   . Thus we get
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If surface is time like,
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From (2.5) and (2.6), the first integral

g
r

n  )1(2 
=constant

From (2.5) and (2.6), constant must have zero.

Theorem 2.2.

An admissible curve on pseudo-sphere )1(2
1S is is r-normal elastic if and only if if it lies on a geodesic.

Proof.

For pseudo-sphere, geodesic torsion vanishes. Normal curvature 1n . From theorem 2.1, we obtain 0g . Conversely any

admissible geodesic arc on )1(2
1S satisfies theorem 2.1.
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