

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 5, Issue, 12, pp. 3594-3600, December, 2013 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

# **RESEARCH ARTICLE**

# CHARACTERIZATION, GROWTH AND CONTROL OF Cryptococcus neoformans Sanf. CAUSING CRYPTOCOCCOSIS

# <sup>\*1</sup>Arun prasath, V., <sup>1</sup>Kumar, T., and <sup>2</sup>Saravanamuthu, R.

<sup>1</sup>Department of Botany and Microbiology, A.V.V.M Sri Pushpam College (Autonomous), Poondi -613503, Thanjavur, Tamilnadu, India <sup>2</sup>Department of Botany, A.V.C College (Autonomous), Mannampandal, Mayiladuthurai, Nagapattinam,

Tamilnadu, India

#### ARTICLE INFO

## ABSTRACT

Article History: Received 16<sup>th</sup> September, 2013 Received in revised form 04<sup>th</sup> October, 2013 Accepted 27<sup>th</sup> November, 2013 Published online 02<sup>nd</sup> December, 2013

Key words: Cryptococcosis, Cryptococcus neoformans, Pedalium murex.

Cryptococcosis is an acute, subacute or chronic fungal disease caused by an encapsulated yeast Cryptococcus neoformans. It is the second most common fungal infection after candidiasis in HIV infected individuals and it is consider as the potentially most serious infections. Commercial antibiotics especially chloramphenicol was more effective in controlling C. neoformans. A wide variety of plants can be screened which are potentially antimicrobial. Morphological and cultural characteristics of C. neoformans Sanf. were studied. Morphology of the organism was studied by direct observation under the microscope by using wet mount and negative staining techniques. The cultural characteristics of the organism were studied in Sabouraud's dextrose agar and broth under the influence of different carbon sources. The influence of some commercial antibiotics and plant extracts were assessed for their antimycotic activities. The identity of the fungus was confirmed by nigrosin staining and biochemical tests. Effect of some physico-chemical factors such as temperature, pH, salinity, sugar (dextrose) and peptone on the growth of C. neoformans was studied and the optimum requirements for its growth have been determined. Antibiotic activities of some commercially available 11 antibiotics were assayed against C. neoformans and chloramphenical alone inhibited the growth of the test organism. The presences of antimicrobial properties in 129 plant extracts were also tested against C. neoformans. Among the plant extracts tested Coleus forskohlii and Pedalium murex (leaf) was more effective than other plant extracts tested.

Copyright © Arun prasath, V. et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

# **INTRODUCTION**

Cryptococcosis is an acute, subacute or chronic fungal disease caused by encapsulated yeast belonging to the genus Cryptococcus. C. neoformans is significantly pathogenic to human beings and animals. A rapid increase of Cryptococcosis worldwide has followed the pandemic of AIDS Cryptococcosis is the second most common fungal infection after cadidiasis in HIV-infected individuals and potentially the most serious infections. In India, Cryptococcus neoformans var. gatti has been reported from Northern India for the first time in 1993 followed by reports from other states also. It has been reported from Ferozepur district of Punjab, Chandigarh, Karnataka and Tamilnadu. Cryptococcosis is more prevalent among the male patients as compared to females. The disseminated form of disease is frequently found in the immune-compromised patients. The clinical features of cryptococcosis may be described depending upon the anatomical sites involved such as pulmonary cryptococcosis,

CNS cryptococcosis or cryptococcal meningitis, visceral or systematic cryptococcosis, osseous cryptococcosis, cutaneous cryptococcosis. Candida albicans and Cryptococcus neoformans infections have been increased dramatically over the last few years, due to the explosion of AIDS and cancer epidemics as well as solid organ transplant recipients around the world (Basha et al., 2010; Jafari et al., 2011). Chariman and Sittambalam et al. (2012) reported a case of steroidinduced cryptococcal infection in a non-HIV-infected person. The medicinal properties of plants have been investigated in the light of recent scientific developments throughout the world due to their potent pharmacological activities, low toxicity and economic viability. India is one of the richest countries in biological diversity, with a variety of climatic conditions and different ecological habits. The world health organization (WHO) has approved the use of herbal medicines (Kamboj, 2000). Ayurvedic and Siddha (Hindu) physicians practicing thousand years ago (Lewis and Elwin Lewis, 1978). The objective of present study is microscopic and macroscopic identification of C. neoformans, growth studies and antifungal activity of plant extracts towards the understanding the control of pathogenic fungus and diseases.

<sup>\*</sup>Corresponding author: Arun prasath, V.,

Department of Botany and Microbiology, A.V.V.M Sri Pushpam College (Autonomous), Poondi -613503, Thanjavur, Tamilnadu, India.

# **MATERIALS AND METHODS**

#### **Collection of culture**

Pure culture of *Cryptococcus neoformans* sanf. was obtained from Institute of Microbial Technology (MTCC), Chandigarh, India.

#### Macroscopic examination

#### **Culture medium**

The culture was streaked on Sabouraud's dextrose agar medium for the cultural identification of organism.

#### **Microscopic examination**

The culture was examined microscopically by Wet mount preparation, Simple staining (Kannan, 1996), Nigrosin staining, LCB mounting (Sivamani, 1999) and Saline wet mount preparation.

# **Biochemical tests (Conventional identification method)**, (Aneja, 2001)

(Aneja, 2001) Carbohydrates utilization test, TSI test, Urease test, Phenol oxidase test, Nitrate reduction test were tested in *C. neoformans* for identification of biochemical characters.

#### Screening of suitable medium

#### Agar media

Six different types of media viz., Sabouraud's dextrose agar, Potato dextrose agar, Nutrient agar, Cornmeal agar, Malt extract agar, Rose Bengal agar, were prepared for the selection of suitable medium for the growth of *Cryptococcus neoformans*.

#### Sabouraud's dextrose agar (SDA) medium

The media were distributed separately in 90 mm diameter Petriplates and allowed to solidify. The *Cryptococcus neoformans* was inoculated and incubated at room temperature for 4 days. After incubation, the cultural characters and colony morphology were studied.

#### **Different broth media**

Six different types of media viz., Sabouraud's dextrose broth, Potato dextrose broth, Nutrient broth, Cornmeal broth, Malt extract broth, Rose Bengal broth were also prepared for the selection of suitable culture broth. The organism was inoculated in 100 ml conical flask containing the broth. The flasks were incubated at  $30\pm 2^{\circ}$ C. The growth rate was determined by UV-spectrophotometer 119 (Systronics, India) at 560 nm for 12 hrs intervals.

# Influence of pH, temperature, salinity, sugar (dextrose) and peptone concentration of the growth of *C. neoformans*

### pН

Sabouraud's dextrose broth was prepared and the pH was adjusted to 4, 5, 6, 7, 8 and 9 using HCl and 0.1 N NaOH

respectively. The different pH adjusted broth was taken in test tubes and the organism was inoculated and incubated at  $30\pm$  2°C for 2-4 days. The growth rate (OD value) of the organism was measured.

#### Temperature

*C. neoformans* was inoculated in test tubes containing Saboraud's dextrose broth and were incubated at different temperature viz., 10, 22 and  $30\pm 2^{\circ}$ C upto 54 hours. The growth rate (OD value) was calculated for 24 hrs intervals.

#### Salinity

SD broth was prepared with different concentrations of salinity (40, 60, 80 and 100 ppt) by adding NaCl and measuring with Refractometer, and (Atago, Japan). The pathogen was inoculated an incubated at room temperature for 12 hrs intervals and the growth rate (OD value) of the organism was determined.

#### Sugar-g/l

Different concentration of sugar (dextrose) viz., 0, 2, 4, 6 and 8 g/ml of Sabouraud's dextrose broth were prepared. *C. neoformans* was inoculated and incubated at  $30\pm 2^{\circ}$ C and the growth rate (OD value) of the organisms was determined.

#### Peptone

Different concentration of peptone viz., 0, 0.5, 1.0, 1.5 and 2.0/100 ml of Sabouraud's dextrose broth were prepared. Culture of *C. neoformans* inoculated and incubated at  $30\pm 2^{\circ}$ C upto 54 hrs. Every 12 hrs intervals the growth rate (OD value) of the organism was determined.

#### Antimycotic activities

#### **Commercial antibiotics**

Sabouraud's dextrose agar medium was prepared and poured into sterile Petriplates. After solidification the organism was swabbed over the medium with the help of sterile cotton swabs. The commercial antibiotic discs of Amphotericin-B, Chloramphenicol, Clotrinazole, Cotrimoxazole, Flucanazole, Gentamycin, Griscofeclein, Itraconazole, Ketocotazole, Micanazole, and Roxithromycin were placed over the medium in the petriplates and incubated at room temperature for 2-4 days. The plates were then examined for the development of inhibition zone.

#### **Plant extracts**

Totally 129 plants were collected from in and around Karur and Thanjavur districts. Their plant extracts were taken and assayed for antimycotic activity.

# **Preparation of plant extracts** (Damodaran and Venkatraman, 1993)

The collected plant parts were washed thoroughly in tap water and 0.1 percent mercuric chloride solution followed by sterile distilled water. 50 g of plant parts (Leaves, Bulbs, Rhizomes, Seeds, and Roots) were weighed and ground in individually with 100 ml of sterile distilled water, by using mortar and pestle. The extract was filtered through a nylon cloth and centrifuged at 5,000 rpm for 10 minutes. The supernatant was taken and 25, 50 and 100 per cent concentrations of the extract were prepared. Extracts were assayed by disc diffusion method (Kirby-Bauer method, 1996). 5 mm diameter sterile discs were dipped in extracts and placed over the medium swabbed with the organism in the Petriplates. The plates were incubated at room temperature and observed and the measured the zone of inhibition (diameter).

## RESULTS

#### Culture characters of Cryptococcus neoformans

In the present investigation lyophilized *Cryptococcus neoformans* Sanf. was obtained from the institute of Microbial technology, Chandigarh and regenerated on sabouraud's dextrose agar. After 3 days of incubation, white with tan cream colour colonies were developed with smooth pasty and yeast like appearance. Microscopic examination of the nigrosin staining revealed encapsulated, round to oval shaped yeast cells (upto  $6 \mu$  in size), so as to confirmed that the culture was yeast-like fungi.

#### **Biochemical test**

Twelve biochemical characters were tested for *C. neoformans* and recorded. The organism grew in seven carbon sources such as dextrose, glucose, lactose, maltose, melibiose, rhamnose, sucrose, xylose and TSI and grew at 37°C The organism produced urease and phenoloxidase and could not reduce nitrate to nitrite.

Table 1. Biochemical tests for C. neoformans

| S.No. | Biochemical tests      | Results  |
|-------|------------------------|----------|
| 1.    | Dextrose               | Positive |
| 2.    | Glucose                | Positive |
| 3.    | Lactose                | Negative |
| 4.    | Maltose                | Positive |
| 5.    | Melibiose              | Negative |
| 6.    | Rhamnose               | Positive |
| 7.    | Sucrose                | Positive |
| 8.    | Xylose                 | Positive |
| 9.    | Triple sugar iron test | Positive |
| 10.   | Urea test              | Positive |
| 11.   | Phenol oxidase test    | Positive |
| 12.   | Nitrate reduction test | Negative |

#### Screening of suitable medium (solid and liquid medium)

Among the different medium tested the pathogen grew very well in Sabouraud's dextrose agar (SDA) and broth. Cornmeal agar (CMA) and broth and PDA and broth showed good growth, but nutrient agar (NA) and and Rose Bengal agar (RBA) and broth recorded only moderate growth.

#### Influence of pH, temperature, salinity, sugar (dextrose), and peptone concentration on the growth of *C. neoformans* Effect of pH

*C. neoformans* grew in all the pH tested. However, better growth was observed at pH 7.0 to 9.0.

#### Effect of temperature

Temperature influenced the growth of *C. neoformans* Among the three temperatures viz., 10, 22 and  $30 \pm 2^{\circ}$ C Maximum growth rate was observed only at  $30 \pm 2^{\circ}$ C.

#### Effect of salinity

Among the various salinity (40, 60, 80 and 100 ppt) tested the growth rate was high at 60 ppt of salinity concentration.

#### Effect of sugar (dextrose)

*C. neoformans* inoculated in Sabouraud's dextrose broth amended with different concentration of sugar (Dextrose -0, 2, 4, 6 and 8g/100 ml) the maximum growth was observed in the broth containing 2g/100 ml concentration of sugar.

#### Effect of peptone

C. *neoformans* inoculated in Sabouraud's dextrose broth amended with different concentration of peptone (0, 0.5, 1.0, 1.5, 2.0 g/100 ml). The maximum growth was observed in 1.5g/100 ml after the incubation period.

#### Antimycotic activity

#### Effect of commercial antibiotics

The commercial antibiotics showed zone of inhibition on the growth when placed on SDA medium swabbed with *C. neoformans.* But observed in there was no zone of inhibition.

In vitro inhibitory effect of antimicrobial agents against C. neoformans

| S.No. | Antibiotics     | Zone of inhibition (mm) |
|-------|-----------------|-------------------------|
| 1.    | Amphotericin-B  | 16                      |
| 2.    | Chloramphenicol | 32                      |
| 3.    | Clotrinazole    | 3                       |
| 4.    | Cotrimoxazole   | 15                      |
| 5.    | Flucanazole     | 9                       |
| 6.    | Gentamycin      | 18                      |
| 7.    | Griscofeclein   | 14                      |
| 8.    | Itraconazole    | -                       |
| 9.    | Ketocotazole    | 3                       |
| 10.   | Micanazole      | 4                       |
| 11.   | Roxithromycin   | 19                      |

#### Effect of plant extracts

Aqueous extract of 129 medicinally important plant parts (leaves, bulbs, rhizomes, seeds and roots) were individually tested. Among the 129 plants, 37 plants were showed inhibitory effect on *C. neoformans*. The most effective plants were *Pedalium murex* (19 mm), *Coleus fovskohlii* (19 mm), *Hibiscus esculentus* (17 mm), *Vetiveria zizanoides* (16 mm), *Solanum nigrum* (15 mm), and *Andrographis paniculata* (16 mm).

## DISCUSSION

The diseases caused by fungi in human beings are common and the are called mycoses. They are classified as superficial mycoses, cutaneous mycoses subcutaneous mycoses and opportunistic mycoses.

| S.No.      | Botanical Name                                    | Family Using Part           |               | Zone of inhibition (mm) 100% |  |  |
|------------|---------------------------------------------------|-----------------------------|---------------|------------------------------|--|--|
| 1.         | Abrus precatorius Linn.                           | Fabaceae                    | Seed          | -                            |  |  |
| 2.         | Acalypha indica Linn.                             | Euphorbiaceae               | Leaf          | 9                            |  |  |
| 3.         | Achyranthes aspera Linn.                          | Amarantaceae                | Leaf          | 10                           |  |  |
| 4.         | Acorus calamus Linn.                              | Araceae                     | Leaf          | -                            |  |  |
| 5.         | Adhotoda vasica Nees.                             | Acanthaceae                 | Leaf          | 10                           |  |  |
| 6.         | Aegle marmelos Correa.                            | Rutaceae                    | Leaf          | 12                           |  |  |
| 7.         | Aleurites molucanna Wild.                         | Euphorbiaceae               | Seed          | 8                            |  |  |
| 8.         | Allium cepa Linn.                                 | Liliaceae                   | Bulb          | 14                           |  |  |
| 9.         | Allium sativum Linn.                              | Liliaceae                   | Bulb          | 15                           |  |  |
| 10.        | Aloe vera Linn.                                   | Liliaceae                   | Leaf          | -                            |  |  |
| 11.<br>12. | Alpinia galanga Sw.<br>Alternanthera sessilis Br. | Zingiberaceae               | Leaf<br>Leaf  | -<br>5                       |  |  |
| 12.        | Andrographis paniculata Nees.                     | Amarantaceae<br>Acanthaceae | Leaf          | 17                           |  |  |
| 13.        | Anisochilus carnosus Wall.                        | Lamiaceae                   | Leaf          | 17                           |  |  |
| 14.        | Annona squamosa Linn.                             | Annonaceae                  | Leaf          | - 8                          |  |  |
| 15.<br>16. | Arachis hypogea Linn.                             | Fabaceae                    | Leaf          | 8                            |  |  |
| 10.        | Aristolochia indica Linn.                         | Aristolochiaceae            | Leaf          | _                            |  |  |
| 18.        | Artemisia vulgaris Linn.                          | Asteraceae                  | Leaf          | _                            |  |  |
| 10.        | Artocarpus integrifolia Linn.                     | Moraceae                    | Leaf          | _                            |  |  |
| 20.        | Azadirachta indica Linn.                          | Meliaceae                   | Leaf          | 6                            |  |  |
| 21.        | Barleria cuspidata Heyne.                         | Acanthaceae                 | Leaf          | -                            |  |  |
| 22.        | Bassia longifolia Linn.                           | Sapotaceae                  | Seed          | -                            |  |  |
| 23.        | Cajanus indicus Spreng.                           | Fabaceae                    | Leaf          | -                            |  |  |
| 24.        | Calophyllum inophyllum Linn.                      | Clusiaceae                  | Leaf          | -                            |  |  |
| 25.        | Capsicum frutescens Linn.                         | Solanaceae                  | Leaf          | -                            |  |  |
| 26.        | Cardiospermum halicacabum Linn.                   | Sapindaceae                 | Leaf          | -                            |  |  |
| 27.        | Carica papaya Linn.                               | Caricaceae                  | Leaf          | -                            |  |  |
| 28.        | Carum bulboehastranum Koch.                       | Apiaceae                    | Seed          | -                            |  |  |
| 29.        | Carum copticum Benth.                             | Apiaceae                    | Leaf          | -                            |  |  |
| 30.        | Carum copticum Benth.                             | Apiaceae                    | Leaf and      | 12                           |  |  |
|            | •                                                 |                             | Seed          | -                            |  |  |
| 31.        | Cassia auriculata Linn.                           | Fabaceae                    | Leaf          | -                            |  |  |
| 32.        | Cassia obtusifolia Linn.                          | Caesalpiniaceae             | Leaf          | 8                            |  |  |
| 33.        | Celosia cristata Linn.                            | Amarantaceae                | Leaf          | -                            |  |  |
| 34.        | Cinnamomum zeylonium Fr.                          | Lauraceae                   | Bark          | -                            |  |  |
| 35.        | Cissus quadrangularis Wall.                       | Vitaceae                    | Leaf          | 10                           |  |  |
| 36.        | Citrus acidia Roxb.                               | Rutaceae                    | Leaf          | 10                           |  |  |
| 37.        | Coriandrum sativum Linn.                          | Apiaceae                    | Leaf          | -                            |  |  |
| 38.        | Coriandrum sativum Linn.                          | Apiaceae                    | Leaf and Seed | -                            |  |  |
| 39.        | Crataeva religiosa Forsk.                         | Capparidaceae               | Rhizome       | -                            |  |  |
| 40.        | Cucumis sativus Linn.                             | Cucurbitaceae               | Fruit         | -                            |  |  |
| 41.        | Cuminum cyminum Linn.                             | Apiaceae                    | Seed          | -                            |  |  |
| 42.        | Cymopsis psoralioides Dc.                         | Fabaceae                    | Leaf          | -                            |  |  |
| 43.        | Cynodan dactylon Pers.                            | Poaceae                     | Leaf          | -                            |  |  |
| 44.        | Cyperus rotundus Linn.                            | Cyperaceae                  | Leaf          | -                            |  |  |
| 45.        | Delonix regia Raf.                                | Caecalpinaceae              | Leaf          | -                            |  |  |
| 46.        | Dolichos biflorus Linn.                           | Caesalpinaceae              | Seed          | -                            |  |  |
| 47.        | <i>Eclipta alba</i> Linn.                         | Asteraceae                  | Leaf          | -                            |  |  |
| 48.        | Eugenia caryophyllata Thumb.                      | Myrtaceae                   | Seed          | -                            |  |  |
| 49.<br>50. | Eugenia jambolana Lam.                            | Myrtaceae                   | Flower        | 15                           |  |  |
| 50.<br>51. | <i>Ferula asafetida</i> Linn.                     | Apiaceae<br>Moraceae        | Root<br>Leaf  | 15                           |  |  |
|            | Ferula asafoetida Linn                            |                             |               | -                            |  |  |
| 52.        | Ficus religiosa Linn.                             | Moraceae                    | Leaf          | -                            |  |  |
| 53.        | <i>Gossypium arboretum</i> Linn.                  | Malvaceae                   | Leaf          | -                            |  |  |
| 54.        | Gossypium arboreum Linn                           | Asteraceae                  | Leaf          | -                            |  |  |
| 55.        | Helianthus annus Linn                             | Asclepiadaceae              | Root          | -                            |  |  |
| 56.        | Hibiscus canabinus Linn.                          | Malvaceae                   | Leaf          | -                            |  |  |
| 57.        | Hibiscus esculentus Linn.                         | Malvaceae                   | Leaf          | 17                           |  |  |
| 58.        | Hibiscus rosasinensis Linn.                       | Malvaceae                   | Leaf          | -                            |  |  |
| 59.        | <i>Hydrocotyle asiatica</i> Linn.                 | Apiaceae                    | Leaf          | -                            |  |  |
| 60.        | Ilicium verum Linn.                               | Magnoliaceae                | Flower        | -                            |  |  |
| 61.        | Indigofera tinctoria Linn.                        | Fabaceae                    | Leaf          | 12                           |  |  |
| 62.        | Jasminum sambac Ait.                              | Oleaceae                    | Leaf          | -                            |  |  |
| 63.        | Jatropha curcas Linn.                             | Euphorbiaceae               | Leaf          | -                            |  |  |
| 64.        | Lablap purpureus (L.) Sweet.                      | Fabaceae                    | Leaf          | -                            |  |  |
| 65.        | Lagenaria vulgaris Serrnge.                       | Cucurbitceae                | Leaf          | -                            |  |  |
| 66.<br>(7  | Lavendula vera Dc                                 | Cucurbitaceae               | Leaf          | 7                            |  |  |
| 67.        | Leucas aspera Spreng.                             | Lamiaceae                   | Leaf          | -                            |  |  |
| 68.        | Luffa acutangula Roxb.                            | Cucurbitaceae               | Leaf          | -                            |  |  |
| 69.<br>70. | Magnifera indica Linn.<br>Mentha piperita Linn.   | Anacardiaceae<br>Lamiaceae  | Leaf          | -                            |  |  |
|            | Montha pipowita Lipp                              | Lamiacaaa                   | Leaf          | _                            |  |  |

## Zone of inhibition of Cryptococcus neoformans to aqueous medicinal plant extracts

| 71           |                                                                 | M.                         | T C           |      |
|--------------|-----------------------------------------------------------------|----------------------------|---------------|------|
| 71.          | Mimosa pudica Linn.                                             | Mimosaceae                 | Leaf          | - 8  |
| 72.          | Moringa pterigosperma Goerth.                                   | Moringaceae                | Leaf          |      |
| 73.          | Mukia scarbrella Ann.                                           | Cucurbitaceae              | Leaf          | 10   |
| 74.          | Murraya koenigii Spr.                                           | Rutacaeae                  | Leaf          | 6    |
| 75.<br>76    | Musa paradisiace Linn.                                          | Musaceae                   | Flower, Stem  | -    |
| 76.          | Musa paradisiaca Houtt.                                         | Myristioaceae              | Seed          | -    |
| 77.          | Nyctanthes arbor-tristis Linn.                                  | Oleaceae                   | Leaf          | -    |
| 78.          | Ocimum basilicum Linn.                                          | Lamiaceae                  | Leaf          | -    |
| 79.          | Ocimum gratissium Linn.                                         | Lamiaceae                  | Leaf          | -    |
| 80.          | Ocimum sanctum Linn.                                            | Lamiaceae                  | Leaf          | -    |
| 81.          | Ocimum var. thyrsiflorum, Benth.                                | Lamiaceae                  | Leaf          | 11   |
| 82.          | Papaver somniferum Linn.                                        | Papaveraceae               | Seed          | -    |
| 83.          | Pedalium murex Linn.                                            | Pedaliaceae                | Leaf          | 19   |
| 84.          | Phascelus radiatus Linn.                                        | Fabaceae                   | Leaf          | -    |
| 85.          | Phaseolus radiatus Linn                                         | Fabaceae                   | Seed          | -    |
| 86.          | Phyllathus distichus Muell.                                     | Euphorbiaceae              | Leaf          | -    |
| 87.          | Phyllathus niruri Linn.                                         | Euphorbiaceae              | Leaf          | 15   |
| 88.          | <i>Physalis minima</i> Linn.                                    | Solanaceae                 | Leaf          | -    |
| 89.          | Pimpinella hyneana Wall.                                        | Apiaceae                   | Seed          | 7    |
| 90.<br>91    | Piper betle Linn.                                               | Piperaceae                 | Leaf          | -    |
| 91.          | Piper nigrum Linn.                                              | Piperaceae                 | Seed          | -    |
| 92.          | <i>Pisidium gaujava</i> Linn.                                   | Myrtaceae                  | Leaf          | -    |
| 93.<br>94    | Pisidium gujava Linn.                                           | Fabaceae                   | Leaf          | -    |
| 94.          | Polyalthia longifolia Benth.                                    | Annonaceae                 | Leaf          | -    |
| 95.<br>06    | Polygala telephoides Wild.                                      | Polygalaceae               | Leaf          | -    |
| 96.<br>97    | Portulaca quadrifida Linn.                                      | Portulacaceae              | Leaf          | 10   |
| 97.          | Prunus amygdalus Bail.                                          | Rosaceae                   | Leaf and Seed | -    |
| 98.<br>98    | Prunus amygdalus Basl.                                          | Rosaceae                   | Seed          | -    |
| 99.<br>100   | Psoralea corylifolia Linn.                                      | Fabaceae                   | Leaf          | -    |
| 100.         | Punica granatum Linn.                                           | Punicaceae                 | Leaf          | -    |
| 101.         | Querus incana Roxb.                                             | Fagaceae                   | Seed          | -    |
| 102.<br>103. | Raphanus sativus Linn.                                          | Brassicaceae               | Leaf          | -    |
| 103.         | Ricinus communis Linn.                                          | Euphorbiaceae<br>Rubiaceae | Seed<br>Seed  | -    |
| 104.         | Rubia cordifolia Linn.                                          | Pedaliaceae                | Leaf          | - 11 |
| 105.         | Sesamum indicum Dc.<br>Sesbania grandiflora Pers.               | Fabaceae                   | Leaf          | 7    |
| 100.         |                                                                 | Malvaceae                  | Leaf          | 1    |
| 107.<br>108. | Sida caprinifolia Linn.                                         |                            |               | -    |
| 108.         | Sida spinosa Linn.                                              | Malvaceae<br>Solanaceae    | Leaf<br>Leaf  | -    |
| 1109.        | Solanum mélangena Linn.                                         |                            |               | - 16 |
| 111.         | Solanum nigrum Linn.<br>Solanum tarvum Swantz.                  | Solanaceae<br>Solanaceae   | Leaf<br>Leaf  | 10   |
| 111.         | Solanum torvum Swantz.                                          | Solanaceae                 | Leaf          | 11   |
| 112.         | Solanum tuberosum Linn.                                         | Solanaceae                 | Leaf          | -    |
| 113.         | Solanum viarum Dunal.                                           | Solanaceae                 | Leaf          | -    |
| 114.         | Sphaeranthus amaronthoides burm. f.                             | Amarantaceae               | Leaf          | -    |
| 116.         | Tabernaemontana coronacia Br.                                   | Apocynaceae                | Leaf          | 14   |
| 117.         | Tamarindus indicus Linn.                                        | Casalpiniaceae             | Leaf          | -    |
| 117.         |                                                                 | Caesalpinaceae             | Leaf          | -    |
| 119.         | <i>Tectona grandis</i> Linn.<br><i>Terminalia chebula</i> Retz. | Combretaceae               | Seed          | -    |
| 120.         | Thespesia populnea Corr.                                        | Malvaceae                  | Leaf          | -    |
| 120.         | Trigonella foenum-graceum Linn.                                 | Fabaceae                   | Leaf          | 11   |
| 121.         | Vetiveria zizanoides Nash.                                      | Poaceae                    | Root          | 16   |
| 122.         | Vetiveria zizanoides Nash.                                      | Poaceae                    | Leaf          | -    |
| 123.         | Vitex negundo Linn.                                             | Euphorbiaceae              | Leaf          | -    |
| 124.         | Wedelia pauciflora W.A.                                         | Asteraceae                 | Leaf          | _    |
| 125.         | Wrightia tinctoria Br.                                          | Apocynaceae                | Leaf          | 14   |
| 120.         | Zinzifer officinalis Zosa.                                      | Zingiberaceae              | Rhizome       | -    |
| 128.         | Zingifer officinalis Zosa.                                      | Rhamnaceae                 | Leaf          | -    |
|              |                                                                 | Indicates no zone for      |               |      |

(-) Indicates no zone formation

## Zone of inhibition of C. neoformans to selected aqueous plant extracts in various concentrations

| S.No. | Botanical name             | Family      | Using part | Zone of inhibition (mm) |     |      |
|-------|----------------------------|-------------|------------|-------------------------|-----|------|
|       |                            |             |            | 25%                     | 50% | 100% |
| 1.    | Pedalium murex             | Pedaliaceae | Leaf       | 9                       | 11  | 19   |
| 2.    | Coleus fovskohlii          | Laminaceae  | Leaf       | 9                       | 15  | 19   |
| 3.    | Vetiveria zizanoides       | Poaceae     | Leaf       | 8                       | 12  | 16   |
| 4.    | Andrographis paniculata    | Acanthaceae | Leaf       | 6                       | 8   | 17   |
| 5.    | <i>Hibiscus esculentus</i> | Malvaceae   | Leaf       | 8                       | 10  | `17  |
| 6.    | Solanum nigrum             | Solanaceae  | Leaf       | 10                      | 12  | 16   |

Cryptococcosis is caused by an encapsulated yeast belonging to the genus Cryptococcus and it can cause disease in apparently immuno competent, as well as immuno compromised hosts. Most susceptible to infection are patients with T-cell deficiencies (Kwon-Chung, 1992; Mitchel and Perfect, 1995). Immuno-compromised patients are more susceptible to mycotic diseases than the healthy people. However, it was emphasized that the type of fungus and the nature of the diseases are to be considered in the study of mycoses (Gopalakrishnan, 2003). Methamphetamine enhances Cryptococcus neoformans pulmonary infection and dissemination to the brain. Notably, C. neoformans modifies its capsular polysaccharide after METH exposure, highlighting the fungus's ability to adapt to environmental stimuli, a possible explanation for its pathogenesis. The findings may translate into new knowledge and development of therapeutic and public health strategies to deal with the devastating complications of METH abuse. (Patel, 2013). The identification of the isolate was confirmed by microscopic examination for the presence of yeast like cells. Direct observation of yeast in KOH preparation Winn and Westernfeld (1997) and Kozel and Cazin (1971) and McGinnis (1980) reported an Indian-ink determined the capsule negative stain of C. neoformans. In the present investigation also pathogen (C. neoformans) was confirmed by negative staining and methylene blue staining method. The biochemical characters C. neoformans was described by Phaff and Fell (1970). In the present study, C. neoformans grew in seven carbon sources did not reduced nitrate to nitrite.

Growth and morphology of fungi is controlled by various physico-chemical characteristics and composition of the culture media (Rai, 1989). Hence, the standardization of the media is essential to grow the organism for any kind of investigation. In the present investigation, C. neoformans was cultured in six different nutrient media and their broth. Of them, in the yeast like fungi grew in all the six media and their broth were slightly decreased compared to the others. Temperature, pH and salinity are the major factors found to affect the growth of any fungi. Maximum growth rate of M. *furfur* was at range of P<sup>H</sup> 7-9. However the fungus was able to grow at all P<sup>H</sup> levels (Moore, 1938; and Vijayakumar 2003). But, in the present investigation C. neoformans grew well at pH ranges from 6.0 to 8.0 indicated that the pH requirements may vary from medium to medium. In vitro study of growth rate of C. neoformans does not grow at 40°C or higher, but they grew at 37°C is normal (Fromtling et al. 1988). Roberts (1969) and Vijavakumar (2003) revealed that the growth rate of Malassezia furfur was well at 37°C on Malt extract agar or Sabouraud's dextrose agar medium. In the present study also revealed the pathogen (C. neoformans) grew well at  $30 \pm 2^{\circ}$ C. Likewise the salinity also had its own varying impact on the growth of different species. Most of the pathogenic fungal species are well adapted to higher salinity concentration (Vasuki et al., 2002; Gopalakrishnan, 2003; Vijayakumar, 2003). In the present investigation, the concentration of salinity was increased and the growth rate of pathogen was slightly increased. Vijayakumar (2003) used five different concentration of glucose and peptone (0, 1, 2, 3 and 4%) in sabourad's dextrose agar and noticed that the growth of M. furfur was observed at 12 hrs intervals. In glucose the concentration was increased at same time, growth rate was increase at 4 percent. In the present work it was found that C. neoformans grew well at 2.0g/10 ml in dextrose and 1g/100 ml

in peptone. Weindling (1934), Florey et al. (1946), Dobos and Hirsch (1966) Bava et al. (1989) reported that the antibiotics, viz., amphotericin B, nystatin, ketoconazole and fluconozole were effective to control the growth of many fungal pathogen who also stated that many yeast like fungi were resistant many commercial antibiotics. In the present study the maximum and minimum effect to control the growth of C. neoformans was observed in chloramphenicol (32 mm), ketaconazole and clotrimazole (3 mm) are respectively. Out of 11 commercial antibiotics intraconazole had no effect on the growth C. neoformans. The antifungal effect of an aqueous extract of garlic was tested against 10 strains of C. neoformans. In the present study, 129 locally available medicinal plants extract examined for antimycotic activity against C. neoformans. Of which 37 plants were showed the inhibitory effect. Pedalium murex (19 mm) and Coleus fovskohliii (19 mm) were showed the maximum inhibition and minimum was in Alternanthera sessilis (5 mm).

#### Acknowledgement

We are grateful to Mr.K.Thulasiah vandayar, Secretary and correspondent, A.V.V.M Sri Pushpam College (Autonomous), Poondi-613 503, Thanjavur Dt, Tamilnadu, India for providing necessary facilities to carryout this research work.

## REFERENCES

- Aneja, K. R., 2001. Experiments in Microbiology, Plant pathology, Tissue Culture and Mushroom Production Technology, 3<sup>rd</sup> edition, New Age International (P) Limited, New Delhi, pp.303-309.
- Basha, S. G., Shareif, S.D. and Shankar, S.G. 2010. Comparison of In vitro susceptibility of non-melanised *Cryptococcus neoformans* to *Cinnamonum zeylanicum* and *Murraya paniculata. Int.J. of Biol.Tech.*, 1(3): 5-9.
- Bauer A W, Kirby W M M, Sherris J C & Turck M. Antibiotic susceptibility testing by a standardized single disk method. Amer. I. C/in. Pathol. 45:493-6, 1966.
- Bava, A. J., C. Rovanitii and R. Negroni, 1989. Comparative study of four antifungal drugs in an experimental model of marine cryptococcosis,, *Mycopathologica*, 108: 81-82.
- Charmian D. Sittambalam, Heidi Hanna, Justin Martello, Dimitr mitsani, 2012. Cryptococcus infection in a non-HIV patient: a case report. *Journal of Community Hospital Internal Medicine Perspectives*, 2012, 2: 19254.
- Damodaran, S.and Venkataraman, S., 1993. A study of the therapeutic efficacy of *Cassia alata* Linn. leaf extract against Pityriasis versicolor. *J. Etanopharmacology*, 42(1): 19-23.
- Dobos, R. J. and Hirsch, J.G., 1966. Bacterial and mycotic infection in man, Asian edition, 4<sup>th</sup> edn., pp. 835-875.
- Florey, H.W., M.A. Jenings, K. Gilliver and A.G. Sanders, 1946. Mycophenolic acid: An antibiotic from *Penicillium brevi*, Compactum Dierckx. Lancet. 1: 46-49.
- Fromtling, R. A., George K. Abruzzo and Alejandro Ruiz, 1988. Virulence and antifungal susceptibility of environmental and clinical isolates of *Cryptococcus neoformans* fro puecto rico, *Mycopathlogica*, 106:163-166.
- Gopalakrishnan, K., 2003. Studies on Candida albicans, M.Sc., Dissertation, Bharathidasan University, Tiruchirapalli, pp. 1-32.

- Jafari A.H.A., Vila, R., Freixa, B., Tomi, F., Casanova, J., Costa, J. and Canigueral, S. 2011. Composition and antifungal activity of the essential oil from the rhizome and roots of *Ferula hermonis*. *Phytochemistry* 72: 1406-1413.
- Kamboj, V.P., 2000. Herbal medicine, Curr. Sci., 78(1): 35-39.

Kannan, N.,1996.Laboratory Manual in General Microbiology, 1<sup>st</sup> edition, Palani Paramount Publications, Palani.

- Kozel, T. R. and Cazin, Jr. J., 1971. Nonencapsulated variant of Cryptococcus neoformans. Virulence studies and characterization of soluble polysaccharide, infect. Immun., 3: 287-294.
- Kwan-Chung, K. J., 1992. A new genus *Filobasidiella* the perfect state at *Cryptococcus neoformans*, *Mycologica*, 67: 1197-1200.
- Lewis, W.H. and Elwin-Lewis, M.P.H., 1978. Medical Botany: Plants Affecting Man's Health, John Wiley and Sons, New York.
- McGinnis, M. R., 1980. Laboratory Handbook of Medical Mycology, Academic Press, New York, pp. 203-204.
- Mitchell, T.G. and J.R. Perfect, 1995. Cryptococcosis in the era of AIDS-100 years after the discovery of *Cryptococcus neoformans*, Clin. Microbiol. Rev., 8: 515-48.
- Moore, M. 1938. Cultivation of *Malassezia furfur*, etiological agent of *Pityriasis* (tinea) *versicolor*. *Mycopathology*, 1: 53-61.
- Patel D, Desai GM, Frases S, Cordero RJB, DeLeon-Rodriguez CM, Eugenin EA, Nosanchuk JD, Martinez LR. 2013. Methamphetamine enhances *Cryptococcus neoformans* pulmonary infection and dissemination to the brain. mBio 4(4):e00400-13. doi:10.1128/mBio.00400-13.

- Phaff, R.H. and J.W. Fell, 1970. Cryptococcus kutzing emenol. Phaff et spencer. In: The Yeasts, a Taxonomic study [J. Lodder (ed.)], North-Holland Publishing Company, Amsterdom, pp. 1088-1145.
- Rai, M.K., 1989. The Effect of different media o the morphology of cultural characteristics of *Candida albicans*. Curr. Sci., 58(15): 861-863.
- Roberts, S.O., 1969. Pityrosporum orbiculare; Incidence and distribution on clinically normal skin. British J. Dermatology, 81: 264-269.
- Sivamani, P., 1999. Medical Mycology, 1<sup>st</sup> edition, Siva Publications, Arcot.
- Vasuki, S., Nadimuthu, N. and Kannan, L., 2002. Distribution of a fungal pathogen, *Fusarium solani* (MART) SACC, in the marine environs of Tamilnadu and its growth response to different salinity and pH. International Symposium on Mycotic Infections in the 21<sup>st</sup> century, Rajah Muthaiah Medical College, Annamalai Nagar, Abstract, 99 p.
- Vijayakumar, R., 2003. Studies on the characterization, growth and control of *Malassezia furfur* Baillon, A Dandruff fungus, M.Phil., Dissertation, Bharathidasan University, Tiruchirapalli, pp. 1-51.
- Weindling, R., 1934. Studies on the lethal principle effective in the parasitic action of *Trichoderma lignorum* on *Rhizoctonia solani* and other soil fungi, *Phytopath.*, 24: 1153-1179.
- Winn, W.S. and Westernfeld, F.W., 1997. Mycotic diseases, Medical Microbiology, pp. 1211-1251.

\*\*\*\*\*\*