

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 7, Issue, 08, pp.18943-18946, August, 2015 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

INTROGROSSION OF BACTERIAL BLIGHT AND BLAST RESISTANCE INTO THE ELITE RICE VARIETY, AKSHAYADHAN THROUGH MARKER-ASSISTED BACKCROS BREEDING

Bhaskar Naik, S., Balachiranjeevi, C. H., Abhilash, V., Harika, G., Laha, G. S., Prasad, M. S. and *Sundaram, R. M.

Indian Institute of Rice Research, Hyderabad, India-500030

ARTICLE INFO	ABSTRACT			
Article History: Received 07 th May, 2015 Received in revised form 10 th June, 2015 Accepted 16 th July, 2015 Published online 21 st August, 2015	Marker assisted backcross breeding (MABB) is a promising strategy for improvement of elite crop varieties for one or more agronomical traits with minimal linkage drag. Akshayadhan is a high-yielding medium duration variety (135 days), whose yield is significantly limited by bacterial blight (BB) and blast diseases. In the present study, we attempted to improve Akshayadhan for resistance against BB and blast through marker-assisted backcross breeding (MABB). A breeding line in the genetic background of Samba Mahsuri, FBR1-15 possessing the bacterial blight resistance gene, <i>Xa33</i>			
<i>Key words:</i> MABB, Blast, Bacterial blight and Rice.	and C101A51 possessing the blast resistance gene, <i>Pi2</i> served as donors and two sets of backcrosses were carried out to combine <i>Xa33</i> and <i>Pi2</i> into Akshayadhan separately. Backcrossing was continued till BC ₂ generation, and gene-specific markers for the two resistance genes were used for marker- assisted selection at each stage of backcrossing in addition to phenotype-based selection for identification of plants closely resembling Akshayadhan. A single BC ₂ F ₂ plant from each backcross possessing either <i>Xa33</i> or <i>Pi2</i> in homozygous condition and closely resembling Akshayadhan were intercrossed to generate inter-cross F ₁ s (ICF ₁ s) to combine the two traits. 'True'ICF ₁ s were identified using the gene-specific marker(s) and selfed to generate ICF ₂ s, which were then subjected for marker- assisted selection to identify plants which are homozygous for both <i>Xa33</i> and <i>Pi2</i> . Homozygous ICF ₂ plants were advanced further by pedigree method for further evaluation. At ICF ₄ selected lines were subjected for screening against BB and blast pathogens and all of them were observed to be resistant against the two diseases. Further, the selected lines also were observed to closely resemble Akshayadhan with respect to agromorphological traits and possessed long-slender grains.			

Copyright © 2015 Bhaskar Naik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Bhaskar Naik, S., Balachiranjeevi, CH., Abhilash, V., Harika, G., Laha, G. S., Prasad, M. S. and Sundaram, R. M. 2015. "Introgrossion of bacterial blight and blast resistance into the elite rice variety, Akshayadhan through marker-assisted Backcros breeding", *International Journal of Current Research*, 7, (8), 18943-18946.

INTRODUCTION

Rice (*Oryza sativa L*.), the largest cultivated crop with over 1.5 billion hectares and production of about 700 million metric tons, a staple food for the large part of world's making it the most consumed cereal grain. Rice crop is more prone to stress (both biotic and abiotic) Of the various biotic stresses, blast and bacterial leaf blight (BLB) diseases are considered as the major cause of severe yield loss in rice. Deploying host plant resistance is one of the most effective strategies for management of BLB and blast (Yoshimura *et al.*, 1995). BLB disease caused by *Xanthomonas oryzae* pv. *oryzae* (*Xoo*), is one of the most destructive diseases in rice (Mew 1987), in its severe form, is known to cause yield losses ranging from 74 to 81% (Chiranjeevi *et al.*, 2015).

*Corresponding author: Sundaram, R. M. Indian Institute of Rice Research, Hyderabad, India-500030. Till date at least 38 genes conferring resistance to BLB have been identified (Sundaram et al., 2014), many of them have been tagged and mapped with closely linked markers (Divya et al., 2015). In the present study we targeted Xa33 gene, which was mapped on Chromosome 7 with two tightly linked markers WR7.1 and WR7.6 (Natrajkumar et al., 2012), with a broad spectrum of resistance against BLB isolates. Rice blast disease, caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae), is also one of the major threats for rice production with a significant yield loose of about 70-80% during an epidemic (Khush and Jena 2009). Nearly, 100 genes and 347 quantitative trait loci (QTL) associated with blast resistance have been identified and 19 resistance genes have been cloned and characterized (Ballini et al., 2008). In the present study we targeted a major blast resistance gene Pi2, which was mapped on chromosome 6 (Yu at al., 1991). Fijellstorm et al. (2006) have identified closely linked markers for *Pi2* gene for its deployment in breeding programme.

Akshayadhan a medium duration variety (135 days) and an elite line, high yielding developed by crossing BR827-35 x SC5 109-2-2 and is highly susceptible to BLB and blast was used as a recurrent parent, which was developed at the Indian Institute of Rice Research, Rajendranagar, Hyderabad (http://www.rkmp.co.in). The present study was initiated to improve Akshayadhan for BLB and blast resistance by introducing *Xa33* and *Pi2* genes using gene linked markers through MABB strategy.

MATERIALS AND METHODS

Parent material: FBR1-15, a breeding line of Samba Mahsuri served as a donor for *Xa33* (Natraj *et al.*, 2012) gene and C101A51 served as the donor for *Pi2* (Yu *et al.*, 1991) gene. Akshayadhan is used as the recurrent parent. The cultivar, TN1 was used as susceptible check for BLB resistance screening, while HR-12 was used as susceptible check for blast resistance screening.

Breeding strategy: Akshayadhan was used as a recurrent parent and crossing was done separately with the donor lines FBR1-15 for *Xa33* and C101A51 for *Pi2* genes respectively. The F₁s thus generated were conformed for their heterozygosity by using PCR-based gene linked markers AP5659-5 (*Pi2*) (Fjellstorm *et al.*, 2006) and WR7.1, WR7.6 (*Xa33*) (Natrajkumar *et al.*, 2012) (Table 1). Thus identified true F₁s were used for backcrossing to obtain BC₁F₁s, which were then genotyped using gene-linked markers specific for either *Xa33* or *Pi2* to identify positive plants. A single plant thus obtained, which was similar to Akshayadhan in phenotype was then backcrossed with the recurrent parent to generate BC₂F₁ plants. The positive BC₂F₁ plants were selfed to generate BC₂F₂ plants.

A single confirmed homozygous BC_2F_2 plant(s) derived from the two independent crosses and phenotypically similar to the recurrent parent were crossed to generate inter-cross F_1 plants (i.e. ICF₁), which were then selfed to generate ICF₂ plants. Homozygous ICF₂ plants possessing *Xa33* and *Pi2* were then identified using gene-linked markers and further advanced to ICF₅ and simultaneous selections were done based on morphological characters.

Phenotypic screening for BLB resistance: A virulent isolate of the bacterial blight pathogen, *Xanthomonas oryzae* pv. *oryzae (Xoo)* collected from BLB hot-spot locations in India, DX-066 (Raipur, Chhattisgarh State, India) was used to screen ICF₅ progenies of Akshayadhan along with donor and recurrent parents for BLB resistance under both glasshouse and field conditions. The *Xoo* strains were cultured and stored as described by Laha *et al.* (2009). The rice plants were clip-inoculated with a bacterial suspension of 10^{8-9} cfu/ml at maximum tillering stage (45 –55 days after transplanting) through the methodology of Kauffman *et al.*, (1973). The plants were scored and evaluated on a 0–9 scale as per IRRI-SES scale (IRRI 1996).

Phenotypic screening for blast resistance: A local isolate of *Magnaporthe oryzae* (SPI-40) from Indian Institute of Rice Research (IIRR), Hyderabad, Telangana State, India; Madhan

Mohan (2011), was used to screen the donor and recurrent parents along with inter-cross derived lines of Akshayadhan for blast resistance under *in-vivo* conditions following uniform blast nursery (UBN) method at IIRR, Hyderabad, India. The pathogen strains were cultured and stored as described by Srinivas Prasad *et al.* (2011). 1 x 10^5 conidia/ml of the fungal conidial suspension at a concentration were used for inoculation to young seedlings at four-leaf stage and maintained high relative humidity for disease development. One week later the inoculated seedlings were monitored for the development of blast lesions. The plants were scored and evaluated on a 0–9 scale as per IRRI-SES scale (IRRI 1996).

RESULTS

Marker-assisted backcross breeding (MABB) to transfer of *Xa33* and *Pi2* in to Akshayadhan

A total of 30 and 25 positive (i.e. heterozygous) F_1 plants were produced by crossing Akshayadhan and FBR1-15 (Cross I) and Akshayadhan and C101A51 (Cross II). At BC1F1, 38 and 32 positive plants were identified based on marker analysis after screening 89 and 82 BC₁F₁ plants produced from by crossing Akshayadhan with F₁ plants generated from Crosses I and II, respectively. In BC₂F₁ generation, a total of 41 and 40 positive plants were identified through marker analysis after screening 93 and 88 BC₂F₁ plants generated from Crosses I and II, respectively. The positive BC₂F₁ plants were selfed to obtain 292 and 323 BC₂F₂ plants. Among these, a total of 68 and 72 were identified to be homozygous from Crosses I and II, respectively, when screened with markers specific for Xa33 and Pi2. Among the homozygous BC₂F₂s, two plants [viz., AF-6-12-5-125 (possessing Xa33; from Cross I) and AC-9-18-30-99 (possessing Pi2; from Cross II)], which looked most similar to Akshayadhan phenotypically were identified and intercrossed to get intercross F₁ (ICF₁) plants. Eight such plants were identified to be 'true' hetrozygotes for both the target genes and were selfed to get intercross F_2 (i.e. ICF₂) plants. From these a total of 243 ICF₂ plants were raised and genotyped, among which 13 homozygous double positive plants (i.e. homozygous for Xa33 and Pi2) were identified (Figure 1). These 13 homozygous ICF₂ plants were advanced further for evaluation of their progeny for resistance against BB and blast.

Phenotypic screening

All the 13 double homozygous breeding lines (i.e. possessing both *Xa33* and *Pi2*) at ICF₃ generation were subjected to phenotypic screening for BB and blast resistance under glass house conditions along with the donor and recurrent parents and the respective checks. With respect to screening against BB pathogen (i.e. DXO66), the resistance parent FBR1-15 (possessing *Xa33*) showed immune level of resistance (i.e. lesion length < 1 cm) and the susceptible checks TN1 and Akshayadhan showed a score of 9 (Table 1). Most of the 13 ICF₂ lines showed immune level of resistance (with a score of 1), while only two lines showed a score of 3. With respect to blast screening, the resistance check C101A51 having *Pi2* gene showed disease score of 1, and the susceptible checks HR-12 and the recurrent Akshayadhan showed score of 9. All the 13 ICF_2 lines derived lines were resistant showing a score of 1 or 3 (Table 1).

 Table 1. Phenotypic screening of selected inter-cross derived lines to check the resistance levels for BLB and blast disease

S.No	Designation	Genotyping [@]		BLB	Blast
		WR7.6 (<i>Xa33</i>)	AP 5659- 5 (<i>Pi2</i>)	score [#] (DX-066)	score*
1	ICF ₂ -25-22	++	++	1	1
2	ICF ₂ -25-43	++	++	1	3
3	ICF ₂ -25-72	++	++	1	1
4	ICF ₂ -25-96	++	++	1	1
5	ICF ₂ -25-125	++	++	1	1
6	ICF ₂ -25-163	++	++	1	1
7	ICF ₂ -25-190	++	++	3	1
8	ICF ₂ -25-211	++	++	1	3
9	ICF ₂ -25-239	++	++	1	1
10	ICF ₂ -25-260	++	++	1	1
11	ICF ₂ -25-285	++	++	1	1
12	ICF ₂ -25-310	++	++	3	1
13	ICF ₂ -25-345	++	++	1	1
14	FBR1-15	++		1	-
15	C101A51		++	-	1
16	Akshayadhan			9	9

^(d) ++ homozygous resistant allele at the particular gene based on screening with gene-specific marker, -- homozygous susceptible allele at the particular gene based on screening with gene-specific marker

[#] A total of twenty plants from each of the backcross derived lines, the donor and recurrent parents were screened with the *Xoo* isolate DX 066 under glass house conditions and lesion length (cm) was calculated and the score was recorded as an average of five leaves per plant as per IRRI-SES (IRRI 1996).

* A total of 40-50 seedlings from each of the backcross derived lines, the donor and recurrent parents were screened in the Uniform Blast Nursery (UBN) available at DRR and disease score was calculated as per IRRI-SES (IRRI 1996).

Figure 1. Fore ground selection for *Xa21* and *Pi2* genes in IC₁F₂ plants through PCR based markers

A. Genotyping of IC_1F_2 population with WR7.6 primer for *Xa33* gene. B. Genotyping of IC_1F_2 population with AP 5659-5 primer for *Pi2* gene. M – Marker, A – recurrent parent (susceptible allele) and B – Donor parent (resistant allele) Arrows indicates that homozygous double positive plants for both the dominant alleles

DISCUSSION

The elite rice variety, Akshayadhan, despite its high yield is highly susceptible to bacterial blight and blast diseases, which have limited its spread across India. Targeted improvement of such elite varieties for one or few target traits is possible through marker-assisted selection (MAS) and among the strategies of MAS, marker-assisted backcross breeding (MABB) (Hospital *et al.*,1997) has been widely deployed for improvement of several elite varieties like Pusa Basmati 1 (Joseph *et al.*, 2004), Samba Mahsuri (Sundaram *et al.*, 2008), Triguna (Sundaram*et al.*, 2009), Lalat and Tapaswini (Prasad *et al.*, 2013) and hybrid rice parental lines (Hari *et al.*, 2011; Singh *et al.*, 2012; Hari *et al.*, 2013; Balachiranjeevi *et al.*, 2015) for disease resistance. MABB can significantly reduce the number of generations needed to arrive at the desired population with the desired combination of genes when compared to conventional breeding which depends on phenotype-based selection (Sundaram *et al.*, 2014).

In the present study, we have successfully introgressed a wildrice derived novel BB resistance gene, Xa33 (Natrajkumar et al., 2012), which has not been deployed so far and a widely deployed blast resistance gene, Pi2 into the background of Akshayadhan through MABB. Xa33 Foreground selection was done at each backcross and intercross generations using the gene-specific markers to identify plants positive for either Xa33 or Pi2 or both. Additionally, at each generation of backcrossing, positive plants which resembled Akshayadhan most closely (based on morphological traits) were advanced for backcrossing ensuring recovery of genetic background of Akshayadhan in just two backcrosses. The homozygous BC₂F₂ plants (possessing either Xa33 or Pi2), which were the most similar to Akshayadhan in two sets of crosses were intercrossed to generate ICF₁ plants. Stable, inter-cross derived lines possessing Xa33 and Pi2 were identified in a homozygous condition at ICF₂ generation (Figure 1). All the ICF₂ lines, donor and recurrent parents along with the checks were then phenotyped and confirmed for their resistance against local, virulent isolates of the BB and blast pathogens (Table 1). All the homozygous ICF₂ lines were resistant for both BB and blast and the resistant levels were similar to that of the donor and the resistance checks showing the effective introgression of both Xa33 and Pi2 in the homozygous ICF_2 plants. The homozygous lines were advanced by pedigree method till ICF5 generation and those lines possessing agro-morphological and grain quality characters similar to or better than Akshayadhan have been identified (data not shown). This indicates that the strategy of coupling marker-assisted foreground selection with phenotype-based background selection is highly successful in not only identifying backcross plants similar to the recurrent parent, but also those which are better than Akshayadhan. In conclusion, through the present study, we have successfully introgressed a major gene each conferring resistance against BB and blast through MABB into Akshayadhan. The elite lines possessing BB and blast resistance, grain quality similar to Akshayadhan and yield levels equivalent to or better than the recurrent parent will be nominated for All India trials.

REFERENCES

Balachiranjeevi, CH., Bhaskar, Naik S., Abhilash, V., Akanksha, S., Viraktamath, B. C., Madhav, M. S., Hariprasad, A. S., Laha, G. S., Prasad, M. S., Balachandran, S. M., Neeraja, C. N., Satendra Kumar, M., Senguttuvel, P., Kemparaju, K. B., Bhadana, V. P., Ram, T., Harika, G., Mahadeva Swamy, H. K., Hajira, S. K., Yugander, A., Pranathi, K., Anila, M., Rekha, G., Kousik, M. B. V. N., Dilip Kumar, T., Swapnil, R. K., Archana Giri, Sundaram, R. M. 2015. Marker-assisted introgression of bacterial blight and blast resistance into DRR17B, an elite, fine-grain type maintainer line of rice. *Molecular Breeding*, 35:151. DOI 10.1007/s11032-015-0348-8.

- Ballini, E., Morel, J.B., Droc, G., Price, A., Courtois, B., Notteghem, J.L and Tharreau, D.A. 2008. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. *Molecular Plant-Microbe Interactions*, 217:859-868.
- Divya, D., Bhaskar Naik, S., Sundaram, R.M., Laha, G.S., Bentur, J.S. 2015.Marker-assisted pyramiding of bacterial blight and ga

2015.Marker-assisted pyramiding of bacterial blight and ga Il midge resistance genes inSamba

Mahsuri and study of their interactions. *International Journal of Scientific Research,* Volume: 4/ Issue: 6/ June 2015. ISSN no: 2277-8179.

- Fjellstrom Robert, McClung, M. Anna and Robert, Shank. A. 2006. SSR markers closely linked to the *Pi-z* locus are useful for selection of blast resistance in a broad array of rice germplasm. *Molecular Breeding*, 17: 149–157.
- Hari, Y., Srinivasa Rao, K., Viraktamath, B.C., Hariprasad, A.S., Laha, G.S., Ilyas, Ahmed. M., Natrajkumar, P., Ramesha, M.S., Neeraja, C.N., Balachandran, S.M., Shobha Rani, N., Balaji Suresh, P., Sujatha, K., Pandey, M., Ashok Reddy, G., Madhav, M.S and Sundaram, R.M. 2011. Marker-assisted improvement of a stable restorer line, KMR-3Rand its derived hybrid KRH2 for bacterial blight resistance and grain quality. *Plant Breeding*, 130:608-616.
- Hari, Y., Srinivasa Rao, K., Viraktamath, B.C., Hariprasad, A.S., Laha, G.S., Ahmed, M., Natrajkumar, P., Sujatha, K., Srinivasprasad, M.S., Rani, N.S., Balachandran, S.M., Kemparaju, B., Mohan, K.M., Sama, V.S.A.K., Shaik, H., Balachiranjeevi, Ch., Pranathi, K., Reddy, G.A., Madhav, M.S and Sundaram, R.M. 2013. Marker-assisted introgression of bacterial blight and blast resistance into IR 58025b, an elite maintainer line of rice, *Journal of Plant Breeding*, 132: 586-594.
- Hospital, F., Moreau, L., Lacoudre, F., Charcosset, A and Gallais, A. 1997. More on the efficiency of marker-assisted selection. *Theoretical Applied Genetics*, 95:1181–1189.
- Joseph, M., Gopalakrishnan, S and Sharma, RK., 2004. Combining bacterial blight resistance and basmati quality characteristics by phenotypic and molecular markerassisted selection in rice. *Molecular Breeding*, 13:377-387.
- International Rice Research Institute. 1996. Standard evaluation system for rice, 4th edition. Manila, Philippines: International Rice Research Institute.
- Kauffman, H.E., Reddy, A.P.K., Hsieh, S.P.Y., and Merca, S.D. 1973. An improved technique for evaluating resistance of rice varieties to *Xanthomonasoryzae*. *Plant disease reporter*, 57, 537-541.
- Khush, G.S. and Jena, K.K. 2009. Current status and future prospects for research on blast resistance in rice (*Oryzasativa* L.). In: Advances in Genetics, Genomics and Control of Rice Blast Disease. pp 1-10.
- Laha, G.S., Reddy, C.S., Krishnaveni, D., Sundaram, R.M., Srinivas. P.M., Ram, T., Muralidharan, K and Viraktamath, B.C. 2009. Bacterial Blight of Rice and its Management. Page 37 in: DRR Technical Bulletin No. 41. Directorate of Rice Research (ICAR), Hyderabad.

- Madhan Mohan, K. 2011. Ph.D thesis entitled "Molecular characterization of pathogenic variability of *Pyriculariagrisea* (Rice Blast fungus)" submitted to Faculty of Biotechnology, Jawaharlal Nehru Technological University Hyderabad, Andhra Pradesh, India.
- Mew, T.W. 1987. Current status and future prospects of research on bacterial blight of rice. *Annual Review of Phytopathology*, 25:359-382.
- NatrajKumar, P., Sujatha, K., Laha, G.S., Srinivasa Rao, K., Mishra, B., Viraktamath, B.C., Hari, Y., Reddy, C.S., Balachandran, S.M., Ram, T., Sheshu Madhav, M., Shobha Rani, N., Neeraja, C.N., Ashok Reddy, G., Shaik, H and Sundaram, R.M. 2012. Identification and fine-mapping of *Xa33*, a novel gene for resistance to *Xanthomonasoryzae* pv. *oryzae*. *Phytopathology*, 102: 222-228.
- Prasad, Dokku; Das, K M; Rao, J.G.N. 2013. Pyramiding of four resistance genes of bacterial blight in Tapaswini, an elite rice cultivar, through marker-assisted selection. Euphytica, 192:87–96
- Singh, VK., Singh, A., Singh, SP., Ellur, R.K., Choudhary, V., Singh, D., Gopala Krishnan, S., Nagarajan, M., Vinod, K.K., Singh, U.D., Prashanthi, S.K., Agrawal, P.K., Bhatt, J.C., Mohapatra, T., Prabhu, KV., Sarkel, S., Rathore, R and Singh, A.K. 2012. Incorporation of blast resistance into "PRR78", an elite Basmati rice restorer line, through marker assisted backcross breeding. *Field Crops Research*, 12:8-16.
- Srinivas Prasad, M., Shesu Madhav, M., Laha, G.S., Ladha Lakshmi, D., Krishnaveni, D., Mangrauthia, S.K., Balachandran, S.M., Sundaram, R.M., Arunakanthi, B., Madhan Mohan, K., Ratna Madhavi, K., Kumar, V and Virakatamath, B.C. 2011. Rice Blast Disease and its Management. Technical Bulletin No. 57. Directorate of Rice Research (ICAR), Hyderabad, 52.
- Sundaram, R.M., Subhadeep, Chatterjee., Ricardo, Oliva., Laha, G.S., Jan, E. Leach., Ramesh, V. Sonti and Casiana, Vera. Cruz., 2014. Update on Bacterial Blight of Rice: Fourth International Conference on Bacterial Blight. *Rice*, 2014, 7:12.
- Sundaram, R.M., Vishnupriya, M.R., Biradar, S.K., Laha, G.S., Reddy, G.A., Rani, N.S., Sarma, N.P and Sonti, R.V. 2008. Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. *Euphytica*, 160:411-422.
- Sundaram, R.M., Vishnupriya, M.R., Laha, G.S., Shobha Rani, N., SrinivasRao, P., Balachandaran, S.M., Ashok Reddy, G., Sarma, N.P and Sonti, R.V. 2009. Introduction of bacterial blight resistance into Triguna, a high yielding, mid-early duration rice variety. *Biotechnology Journal*, 4:400-407.
- Yoshimura, S., Yoshimura, A., Iwata, N., Mc Couch. S.R., Abenes, M.N., M Baraoidan, M.R., Mew, TW and Nelson, R.J. 1995. Tagging and combining bacterial blight resistance genes using RAPD and RFLP markers. *Molecular Breeding*, 1:375-387.
- Yu, Z.H., Mackill, D.J., Bonman, J.M and Tanksley, S.D. 1991.Tagging genes for blast resistance in rice via linkage to RFLP markers. *Theoretical Applied Genetics*, 81:471-476.
