

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 7, Issue, 10, pp.20980-20983, October, 2015 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

EVALUATION OF PHENYLALANINE AMMONIA LYASE BETWEEN *PETROSELINUM CRISPUM* AND *RHODOSPORIDIUM TORULOIDES* BASED ON COMPUTATIONAL ALGORITHMS

*,1MaziarBahreini, ²MojganBorumand and ³Fereydoon Bondarian

¹Department of Biochemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran ²Ms.C of Genetics, Science and Research Branch, Islamic Azad University, Tehran, Iran ³Department of Biotechnology and Plant Breeding, Science and Research Branch, Islamic Azad University

ARTICLE INFO	ABSTRACT
<i>Article History:</i> Received 14 th July, 2015 Received in revised form 28 th August, 2015 Accepted 21 st September, 2015 Published online 20 th October, 2015	In this study, Phenylalanine ammonia lyase (PAL) was evaluated as one of the important enzymes in the pathway of phenylpropanoids synthesis in order to understand the structural fold and sequence homology; so that it was extracted from Protein Data Bank (PBD): X-ray crystallographic structures of <i>Rhodosporidiumtoruloides</i> (1T6J) as a genus of fungi category and (1W27) <i>Petroselinumcrispum</i> as a genus of plants category. In order to structural analysis of PAL has been used some software include Protein Structure Comparison Tool V 1.4, on-web PDBe version based on secondary
<i>Key words:</i> PAL, Structure Alignment, Phenylpropanoids	structure matching (SSM) and Combinatorial Extension(CE) for Structure Alignment, calculati statistical indicators such as Z-score, p-value, Q-score and etc. Finally PAL showed a signification relationship between structural sequences of 1T6J & 1W27 in terms of structural folds similarity partialhomology with calculated indices between the two enzymes.

Copyright © 2015 MaziarBahreini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: MaziarBahreini, MojganBorumand and Fereydoon Bondarian, 2015. "Evaluation of phenylalanine ammonia Lyase between *Petroselinum crispum* and *Rhodosporidium toruloides* based on computational algorithms", *International Journal of Current Research*, 7, (10), 20980-20983.

INTRODUCTION

Structural biology is an important tool to understand the structural-functional details of bio-macromolecules at the atomic level. It is using for fund a mental studies of life from the evolutionary perspective and process engineering of metabolic pathways. Phenylalanine ammonia lyase (PAL) is playing an important role in dynamic control of primary and secondary metabolites converting process; also it catalyzes the converting reaction about non-oxidative elimination of phenylalanine (L-phe) amino group to trans-cinnamate. (Joseph et al., 2005) Trans-cinnamate, plays role as prefabricate for wide range of phenylpropanoids compounds such as phytoalexins, antioxidants, UV-absorbing compounds and pigments like anthocyanins. Also elimination of metabolic disorders is one of the pharmaceutical applications of PAL in patients with Phenylketonuria. (Holger Ritter and Georg E. Schulz, 2004) There are several computational methods have been reported such as dynamic programming, vector alignment and etc. Algorithms of proteins structure comparison are used in order to remote homologues evaluation. The importance of this is appeared well when it is not easy to check the

*Corresponding author: MaziarBahreini,

Department of Biochemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran. evolutionary distance between them because of low similarity sequence in the structures. Studies show that three-dimensional structures of proteins are more conserved than sequences; also it is possible that two proteins with sequence similarity would have a very similar three-dimensional structure. It has provided development background of computational methods to predict the third structure of proteins such as Homology modeling. On the other hand, some proteins could have been a same evolutionary origin but different structure and function. This phenomenon could be occurred due to divergent evolution (Divergent evolution). (Zhang and Skolnick, 2005) In this work structure aligment analysis were done on PAL enzyme of *Rhodosporidiumtoruloides* (1T6J) and *Petroselinumcrispum* (1W27) (Figure 1)

MATERIALS AND METHODS

In order to the structural alignment of two PAL enzymes, it was used two algorithms secondary structure matching (SSM) and Combinatorial Extension (CE) available at PDBe server. In this study, these tow enzymes have hadthe plant and fungi origin with PDB codes (1T6J) and 1W27. CE algorithm (Pair wise structural alignment) is able to perform quantitative assessment of how structural folding in tow proteins through

Figure 1. 3D Structure of *Rhodosporidiumtoruloides* (1T6J) PAL Enzyme

A)Graphical representation of SSEs algorithms (4)B) Q-score equation represents the quality function of C-alignment, maximized by the SSM alignment algorithm.

Figure 2.

So that in this way, the best likely alignment is made through combinational developing of a set of aligned fragment pairs (AFPs) and calculation of matrix similarity (Shindyalov and Bourne, 1998). Eventually it was presented distribution of existing structures in the PDB database via Z-score calculation so that Z>3.5 is demonstrated equality in structural folding (Adam Godzik and Philip E. Bourne, 2010). Q-score parameter is been made balance between RMSD and Nalign in SSM algorithm. It has shown moreaccuracy in structural similarity than other algorithms such as CE, VASD, DALI and geometric quantities (Krissinel and Henrick, 2004).

$$Q = N_{\text{align}}^2 / \left\{ \left[1 + (\text{RMSD}/R_0)^2 \right] N_1 N_2 \right\}$$

RESULTS AND DISCUSSION

Finding this study has demonstrated a significant relationship between structural similarity and partial homology in sequences of tow PAL enzymes (1T6J and1W27); note that was the calculative parameters such as RMSD and Z-score in CEalgorithm (Table 1) and P-score and Q-score in SSM algorithm (Table 2). Also the calculative parameters have shown advantage of SSM algorithm than CE algorithm about quantitative evaluation of structural similarity. It is matched with K. Henrick and E. Krissinel study (2004). In another study that was done by Longkuonxiang and *et al.* two PAL toruloides origins have been taken in one cluster for severance of PAL clusters with prokaryotic and eukaryotic origins based on Clustal x algorithm by Neighbor-joing method (Longkuan Xiang and Bradley S. Moore, 2005) also.

Results of Multiple structure alignment based on SSM algorithmwere shown in Figure 4. And Table 3. Rotation-Trainslation Matrices of Best Superposition were calculated and represented in Table 4.

 Table 1. Results of Pairwise structural Alignments of PAL

 enzyme based on CE Algorithm between A and B chains

PDB ID	1W27 chain A vs 1T6J chain A	1w27 chain A vs 1T6J chain B	1w27 chain B vs 1T6j chain B	1w27 chainB vs 1T6J chain A
Z-score	7.74	7.84	7.84	7.84
Ca RMSD	2.14	2.16	2.22	2.21
(%)Id	36.36	36.53	36.16	36.22
(%)Similarity	54.55	54.55	54.4	54.32
Align-len	707	707	698	699
score	1201.98	1217.07	1870.18	1565.6
Gaps	102	102	84	86
eq	605	605	614	613

Figure 4. Graphical Output of Multiple Structure Alignment PAL Enzymes

a genus of fungi category and (1W27) Petroselinumcrispum											
Q-score	P-score	Z-score	RMSD	Nalign	Ng	‰ _{seq}	%SSE	Match	%SSE	Nres	Title
1.00	113.6	32.2	0.00	647	0	100	100	1T6J:A	100	647	Crystal structure of phenylalanine ammonia lyase from rhodosporidium toruloides
1.00	61.7	23.7	0.15	647	0	100	96	1T6J:B	90	647	Crystal structure of phenylalanine ammonia lyase from rhodosporidium toruloides
0.54	19.5	14.1	1.77	569	21	37	81	1W27:B	73	690	Phenylalanine ammonia-lyase (pal) from petroselinum crispum
0.52	16.4	13.6	1.85	569	22	37	81	1W27:A	71	690	Phenylalanine ammonia-lyase (pal) from petroselinum crispum

 Table 2. Results of Mutiple Structure Aligment of Rhodosporidiumtoruloides (1T6J) as

 a genus of fungi category and (1W27) Petroselinumcrispum

Table 3. Results of Multiple Structure Alignment Based on SSM Algorithm

Structure	Nres	NSSE	Consensus Score			
			RMSD	Q-score		
PDB 1W27:A	690	31	1.0074	0.7710		
PDB 1W27:27:B	690	30	0.9393	0.7814		
PDB 1T6J:B	647	29	0.9392	0.8333		
PDB 1T6J:A	647	27	0.9489	0.8318		
		Number of Aligned residues 592	Overall RMSD 1.566			
		Number of aligned SSEs 21	Overall Q-sco	Overall Q-score 0.6169		

Table 4. Rotation-TraInslation Matrices of Best Superposition

PDB 1w27:A	-0.311	-0.842	0.441		Х		109.258
	0.217	-0.515	-0.830	×	Y	+	76.342
	0.925	-0.163	0.343		Z		62.425
	0.048	0.843	-0.536		Х		80.350
PDB 1w27:B	-0.379	0.512	0.771	×	Y	+	-18.925
	0.924	0.166	0.344		Z		50.041
	0.466	0.845	0.262] [Х		8.339
PDB 1t6j:B	0.846	-0.513	0.148	×	Y	+	-46.978
	0.259	0.153	-0.954		Z		105.099
	1.000	0.001	0.001		Х		-0.126
PDB 1t6j:A	-0.001	1.000	-0.000	×	Y	+	0.099
	-0.001	0.000	1.000		Z		0.060

Notes of table

Z-score represents the statistical significance of a match in terms of Gaussian de stributation. Sequence identity $\%_{seq}$ represents a quality characteristic of C α -alignment RMSD (Root Mean Square Deviation) which calculated between C α -atoms of matched residues at best 3D superposition of the query and target structures.

P-score shows minus logarithm of the P-value. Which represents *quality of match* at a chance, which has been calibrated on the non-redundant database containing all SCOP folds (about 700 structures).

Length of alignment N_{algn} , (number of matched residues) which is calculated at best 3D superposition Sequence identity $\%_{seq}$ is a quality characteristic of C α -alignment.

Percent of matched SSEs: shows fraction of secondary structure of target chain has been identified in query protein Match is identified as a target structure name. The name may be one of the following PDB code, SCOP domain

Also Calabrese and *et al.* were demonstrated overall structural similarity in these structures via scrutiny of X ray crystallography structures of PAL At last; Finally it has been shown a significant relationship between structural sequences of 1T6J & 1W27 in PAL enzyme in terms of structural folds similarity and partial homology with calculated indices between the two proteins. In conclusion finding of present study confirm previous researches in this pathway.

REFERENCES

Adam Godzik and Philip E. Bourne.2010. Pre-calculated protein structure alignments at the RCSB PDB Website, Vol. 26 no. 23 pages 2983–2985

- Calabrese JC, Jordan DB, Boodhoo A, Sariaslani S, Vannelli, 2004. T. Crystal structure of phenylalanineammonialyase: Multiple helix dipoles implicated in catalysis. *Biochemistry*, 43:11403–11416.
- Holger Ritter and Georg E. Schulz.2004. Structural Basis for the Entrance into the Phenylpropanoid Metabolism Catalyzed by Phenylalanine Ammonia-Lyase, the Plant Cell, Vol. 16, 3426–3436.
- Holland R. C. G., T. A. Down, M. Pocock, A. Prlic', D. Huen5, K. James, S. FoisyA. Dräger, A. Yates, M. Heuer and M. J. Schreiber. 2008. BioJava: an open-source framework for bioinformatics, Vol. 24 no, pages 2096– 2097
- Joseph P Noel, Michael B Austin, and Erin K Bomati, .2005. Structure–function relationships in plant phenyl proponed Biosynthesis, *CurrOpin Plant Biol.*, 8(3): 249–253. doi:10.1016/j.pbi, 03.013.

- Krissinel E. and K. Henrick .2004. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions, Biological Crystallography ISSN 0907-4449 2256–2268.
- Longkuan Xiang1 and Bradley S. Moore .2005.Biochemical Characterization of a Prokaryotic Phenylalanine Ammonia Lyase, *Journal of Bacteriology*, p. 4286–4289.
- Shindyalov, I.N.; Bourne P.E.1998. "Protein structure alignment by incremental combinatorial extension (CE) of the optimal path" (http:// peds. oxfordjournals. org/ content/ 11/ 9/ 739. abstract). *Protein Engineering*, 11 (9): 739–747. doi:10.1093/protein/11.9.739. PMID 9796821.
- Zhang Y, Skolnick J.2005. The protein structure prediction problem could be solved using the current PDB library. Proc Natl AcadSci USA 102(4):1029-34.
