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INTRODUCTION 
 

Rotational motions in earthquake sources naturally generate 
rotational seismic waves. The goal of this study is to describe 
rotational seismic waves excited in earthquake sources
(Majewski, 2008; Teisseyre, 2007). We consider a continuum 
with nonlinear microstructure. Such a continuum allows the 
propagation of nonlinear rotational seismic waves. We 
consider the rotational seismic waves obtaining a nonlinear 
equation describing rotational seismic waves propagating in 
the solid Earth modelled as the continuum
microstructure (Teisseyre, 2009). This paper is about the 
seismic waves in a strong earthquake. The difference in speed 
of travel of P-waves and S-wave is vital to transmit energy of 
seismic wave. The P wave is a longitudinal
compression wave. Force is applied in the direction that the 
wave is travelling. Ground or earth is pretty incompressible, so 
the energy is transferred pretty quickly. In the S wave, the 
medium is displaced in a transverse (up and down 
to the line of travel) way, and the medium must 
"move away" from the material right next to it to cause the 
shear and transmit the wave.  
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ABSTRACT 

Although seismic waves have been studied for many years, their soliton nature has only recently come 
to wide notice. Deformation solitons propagate along earthquake faults and induce earthquakes. 
Rotation solitons are generated in earthquake sources and propagate throughout the Earth. The 
conclusion to be reached from our example is that the research on seismic solitons is essential for 
investigating the propagation of seismic waves and helps understand mechanisms triggering
earthquakes. This paper discusses the development of elastodynamics equations similar to Maxwell's 
equations in a chiral single-mode which is applied to a seismic channel, which is dispersive and 
nonlinear. The chirality is described in terms of the formalism proposed by Born
nonlinearity is Kerr-type, and dispersion of the medium is taken into account explicitly through the 
Taylor series expansion. Through numerical calculations these theoretical results would allow analyze 
the effects of chirality on the soliton equation for propagation of S
earthquakes as happened recently in Japan Chili and Nepal. 
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Rotational motions in earthquake sources naturally generate 
study is to describe 

rotational seismic waves excited in earthquake sources 
We consider a continuum 

with nonlinear microstructure. Such a continuum allows the 
propagation of nonlinear rotational seismic waves. We 

obtaining a nonlinear 
equation describing rotational seismic waves propagating in 
the solid Earth modelled as the continuum with nonlinear 

This paper is about the 
The difference in speed 

wave is vital to transmit energy of 
longitudinal wave or a 

wave. Force is applied in the direction that the 
incompressible, so 

the energy is transferred pretty quickly. In the S wave, the 
(up and down - compared 

to the line of travel) way, and the medium must shear or 
"move away" from the material right next to it to cause the 
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This takes more time, and this is why the S wave moves more 
slowly than the P wave in seismic events. 
interplay between the nonlinearity and dispersion using a chiral 
approach. There are two types of tectonic
the earthquake source and propagating along the fault: 
longitudinal self-distortion (plastic) solitons and shear self
distortion solitons The Earth’s interior is modeled as an elasto
plastic continuum and elastoplastic
Erofeyev (2003). He derived two soliton equations that 
describe elastic longitudinal and plastic shear distortion 
solitons. The problem of sine
along the fault was considered by Teisseyre and Yamashit
(1999). We apply similar method in order to determine the 
solitons propagating along the fault. The type of solitons 
studied here are the seismic shear self
solitons that propagate along the fault and describes the 
tectonic wave that can be excited by past earthquakes and may 
propagate slowly along the fault to trigger new earthquakes.
 

Equation (19) of this paper describe nonlinear Schrödinger’s 
equation that with shear self-distortion solitons. 
equation usually has multi-soliton solutions. 
many solitons can be excited and may propagate slowly along 
the fault. Our main result (equation 19) is obtained under the 
chiral approach (Lakhtakia et al., 
1997; Torres Silva et al., 1998; Torres Silva 
chirality was first observed as optical activity and corresponds 
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investigating the propagation of seismic waves and helps understand mechanisms triggering 
earthquakes. This paper discusses the development of elastodynamics equations similar to Maxwell's 

mode which is applied to a seismic channel, which is dispersive and 
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This takes more time, and this is why the S wave moves more 
slowly than the P wave in seismic events. Here we model the 
interplay between the nonlinearity and dispersion using a chiral 
approach. There are two types of tectonic solitons excited in 
the earthquake source and propagating along the fault: 

distortion (plastic) solitons and shear self-
The Earth’s interior is modeled as an elasto-

plastic continuum and elastoplastic waves were investigated by 
He derived two soliton equations that 

describe elastic longitudinal and plastic shear distortion 
solitons. The problem of sine-Gordon solitons propagating 
along the fault was considered by Teisseyre and Yamashita 

We apply similar method in order to determine the 
solitons propagating along the fault. The type of solitons 
studied here are the seismic shear self-distortion Schrödinger’s 
solitons that propagate along the fault and describes the 

that can be excited by past earthquakes and may 
propagate slowly along the fault to trigger new earthquakes. 

Equation (19) of this paper describe nonlinear Schrödinger’s 
distortion solitons. This type of 

soliton solutions. This means that 
many solitons can be excited and may propagate slowly along 
the fault. Our main result (equation 19) is obtained under the 

et al., 1985; Torres Silva et al., 
., 1998; Torres Silva et al., 1996). The 

chirality was first observed as optical activity and corresponds 
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to the rotation of the plane of polarization in linear isotopic 
materials. The Born-Fedorov equations for elastodynamic 
system are given by (Torres Silva et al., 1996; Torres-Silva  
and  Souza de Assis, 2010; Torres-Silva and Lopez-Bonilla, 
2011). 
 

 cD E T E  
 

                                        ……………….… (1) (1) 

 cB H T H  
                                          …………………. (2) (2) 

 

These equations are symmetric under duality transformations 

and temporal reversibility. The pseudoscalar cT  represents the 

measure of chirality and has units of length. The validity of 
equations (1) and (2) has been demonstrated in studies of 
optically active molecules (Lakhtakia et al., 1985), and of the 
propagation of light in optically active crystals (Majewski, 
2008). Although from an electromagnetic point of view, chiral 
homogeneous material can be described by different specific 
equations (Torres Silva et al., 1997; Torres Silva et al., 1998; 
Torres Silva et al., 1996). By analogy between elastodynamics 
and electrodynamics in this work we use the Born-Fedorov 
equations as the most suitable for applications of our interest. 
Here the density of matter is equivalent to the electric 

permittivity   , and the Lamé parameter 1/S  . The 

speed of transversal seismic S- waves is given by / S 

[10.12]. A theoretical investigation is made of the changes of 
the polarization of transverse seismic waves during their 
propagation through the Earth. The consequences of these 
results for earthquake mechanism studies, based on transverse 
waves, are discussed. 
 

Basic equation for rotational propagation 
 

Using equations (1) and (2), we obtain in the analogous 
framework under this section the nonlinear Schrödinger 
equation for a chiral seismic channel. (S-type waves) 
 

 S n S c SD E T E   
 

                        ……………….… (3) (3) 

 1/ ( )S S S c SB H T H  
 

                  ……………….… (4) (4) 

 

Where n  is the density and cT  the chiral rotational seismic 

coefficient. The corresponding like Maxwell equations are 
 

 
 n S n S S

S S c S S c

E E E
H E T E E T

t t t t

 
  

  
        

   

  
     ..… (5)  

 
(1/ ) (1/ )

SS S
S S S c

HB H
E T

t t t
 

  
     

  

 
         ……….… (6) (6) 

 

Taking the rotational of the equation (6) and whereas  
 

0S n S c SD E T E         
 

� ; 0 0S nE    


 small 

0 0S SB H   


 
 

We obtain the following wave equation 
 

 

22
2 2 2

2 2

2

2

(1/ ) (1/ )

(1/ ) (1/ ) (1/ )

(1/ )

S
S S c S S n

S S
S S n c S c

S
S c

E
E T E

t t

E E
T T

t t

E
T

t

   

     

 


   

 

 
   

 


 




 

 



           …….… (7) (7) 

Here we assume that the chiral seismic medium is of a Kerr 
nonlinearity type, described by a refractive index such that the 
seismic permittivity is 
 

2

2n S SE   


                                     ……………….… (8) 

 

Where S  is the linear part and 2  is the nonlinear 

component respectively of n   is the rock conductivity loss. 

From equation (8) we can be inferred easily the expression for 
the index of refraction as in (Torres Silva et al., 1998). 

Replacing n into equation (7) we obtain  
 

2 2
2 2 2

2 2

2
2

2 2

2 2
2

22 2

(1/ ) (1/ )

(1/ ) (1/ )

2(1/ ) (1/ )

(1/ )

S S
S S S c S S S

S S
S S S

S S
S S c S c S

S
S c

E E
E T E

t t

E E
E

t t

E E
T T E

t t

E
T

t

   

   

   

 

 
   

 

 
  

 

 
  

 


 



 
 

 


 




        …….… (9) 

 

Assuming that SE


 represents a localized waveform, which 

propagates in the z direction, it has 
 

         0 0ˆ ˆ, ,
j kz t j kz t

SE r t x jy r t e e
    

    
  

      ….… (10) 
 

Where 


 represents the complex envelope. To solve the 
equation (9) the property of the Fourier transform 

2 2 2
0t      is applied, and then we determine 

2 and 

 . 
After several algebraic manipulations the result is as follows  
 

 

 

 

2 2 2
0 0 0

2
0 02

3
0 0 0

2
2
0 0

1 2

1
2

2 1

1

c

c

c

T k jk k
z

j
tv

k j T k

T k

 

  



 
    

 

 
    

 

   

   







 

 

      ……………….… (11) 

 

Where 
2 1
S S S

v   ; (1/ )
S

   ; 0

0 vk  ; 2
(1/ )

S
   , 

1j   . To get to the equation (13) the approximation of 

small amplitudes is also considered, given by 
 

2 2
22

2

0 0 02 2
2 , ,j k j j j

z t tz t
  

        
  

   

     
  

� � � �

 
 
The effect of dispersion is included heuristically. Making the 

change of variables 02k  


 y 2 2
01 c

z

T k
z


  and rearranging 

the terms we obtain 
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 

 
 

0

2
20

03

2 0
0

1
1

2

1
2

1
2

c

c

c
c

j
j k T

v t kz

k T
k

k T
k T

  



 





  
     

 

 
  

 

                         ……….… (12) 

  (12) 

As the envelope  ,z t  is a slowly varying function of in z  

and t , the dispersion relation  k k   can be transformed to 

the domain of spatial variations by means of 0     , 

which is a small deviation of the sideband frequency with 

respect to 0 , and through 
0k k k   , which represent the 

corresponding wave number. Using the Fourier transform for 

k ,    , approximating 1 k
v 


� , and using the Taylor 

series we obtain 
 

2 2
0

2 2
00

1 1
...

2

kk k
k j

v t t tt 

     
     

    
 

 

By substituting this operator in equation (14), we obtain 
 

   
 

22
20

0 02 3
0

20
0

1 1
1 1

2 2 2

1 0
2

c c

g

c
c

j
j k k T k T

v t kz t k

k T
T k

   
  





  
     

 

 
   
 

  (13) 

                                                                                                             ……….… (13) 

Where  
 

1

g

k
k

v


  


; 

2

2

k
k




 


;  

Equation (13) describes the propagation of pulses in a chiral, 
rotational, dispersive and non linear channel. The analysis of 
each term is as follows (Torres Silva et al., 1998):  
 
The first term represents the evolution of the pulse with 
distance. The second, and third terms represents the scattering 

of a seismic chiral channel  1

gvk  and k  corresponds to the 

chromatic dispersion k , indicating that the pulse moves with 
the group velocity, while the dispersion of the group velocity 

(GVD) is represented by k , which alters the relative phases 
of the frequency components of pulse widening, producing its 
temporal expansion. The fourth is associated with attenuation  
( ), in this case such losses are weighted by the seismic 

chirality. The fifth term 
2

  represents nonlinear effect, like 

a Kerr effect, which is characterized by having a refractive 
index dependent on the seismic field intensity. An index of this 
type, means that we have a phase shift dependent on the 
intensity and as temporal changes of phase are also temporal 
changes of frequency, we have that type Kerr nonlinearities 
can alter and widen the spectrum of frequency of the pulse. 
This term also depends on the chiral factor of the channel. 
Finally, the last term is clearly associated with the chirality of 
the seismic channel. 
 

Analysis 
 

In order to ease up the solution of the propagation equation the 
following changes of variables is introduced:  

*
Z

t t
vg

  , *z Z  

 

Defining  
 

2 1

SS Sv  ; (1/ )
S

  ; 0

0 vk  ; 
2(1/ )

S
  ;

01 cC k T            

                                                                                                ……….… (14) 
 

2 0q k  , 
2 2

1 0

z
Z

k



 , 0

0k
v


  , 

´

1 1

/
g

v
k k 

 
 

 , 

2

´́

2

k
k







 ,                                           ……….……….… (15) 

 

We have 

2

22
1 2´´ 0 0

32 * 2 (2 )0 0

Cq q
j k j q q q

Z t k k

    
   

 
     …….… (16) 

Finally, is useful normalize the Eq. (16) by introducing 

0

*t

t
                                                 ……………..……… (17) 

Let us model heuristically the relationship between the wave 
amplitude and the initial seismic power as follows  
 
The normalized amplitude q (equation 16) is proportional to  
 

S

ref

P

P
or S S S

ref ref ref

P t E

P t E
  

 

Where S
P is the power earthquake, ref

P is the power reference 

and S
t is the time duration of the earthquake, S reft t , so using 

the empirical equation of Gutemberg and Richer (Gutemberg 
and Richer, 1956)  
 

log 11.8 1.5
S

E M                                    ……..………...(18) 

 

We have 
 

0.12( )S refM MS

ref

e
E

E


  

 

Thus we can model the S-wave q through the transformation  
 

0.12( )
0

02
( , ) ( , )

S refM M

C
Z

k
q Z e e U Z



 




                …………(19) 
 

Where S
M  is the peak magnitude of the soliton and ref

M is the 

reference magnitude for a weak seism which acts as standard 
reference. Finally the expression (16) can be scaled as 
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0.12( )
022

20 0
2 2 3

0 0

1 ´´

2 (2 )

S ref
M M

t

CZU k U k
j e e U U

Z k







 

  
 

  …… (20) 

 

To our knowledge this is the first time that the magnitude S
M  

of earthquake is considered into the nonlinear Schrodinger 
equation. Through numerical calculations these theoretical 
results (eqs 14-20), would allow analyze the effects of chirality 
on the attenuation of equation (20) for propagation of S-
seismic pulses of strong earthquakes as happened recently in 
Japan Chili and Nepal. Also we take into account the 

magnitude S
M  of the earthquake.  

 

Simulations 
 

To solve the pulse propagation in nonlinear dispersive media 
we use the split-step Fourier method. The relative speed of this 
method compared with most FD methods can be attributed in 
part to the use of finite-Fourier-transform (FFT) algorithm 
(Agrawal, 1995). In general, linear and nonlinear parts of 
equation (19) act together along the length of the earthquake. 
The split-step method obtains an approximate solution by 
assuming that in propagation the seismic field over a small 
distance z , is carried out in two steps. In the first step, from  

0Z Z  to 0 2Z Z Z   , the linear part acts alone, and the 

non linear part is zero. In the second step, the nonlinearity acts 

alone in the point 2Z , (linear part is null). 
 

 
 

Figure 1. Parameters of a weak earthquake 

1
ref

M  , 1
S

M  , 1 10C k Tc   , 0Tc  , / 4 /S km s  

4 / ^ 3S g cm  4
2 10  0 100Z km , 

3

2
10(1 / )

S
  


  

 
Figure 1. Shows the Intensity U calculated numerically from 
equation (20). The parameters correspond to a weak 

earthquake with 1
ref

M  , so ref
M is the reference magnitude 

for a weak seism which acts as the reference standard to 

nonlinear Schrodinger equation with 1
s

M  . Here the chiral 

effect is not considered 0Tc  .The equation (20) is reduced to 
 

22
20

2 2 3

0 0

1 ´́

2 (2 )t

U k U
j U U

Z k





 
  

 
 

Which is the typical result obtained by other authors 
(Erofeyev, 2003; Gordon, 1983). Figure 2. Shows the envelope 

of U for a strong earthquake with 1 0.30C k Tc   , Nearly of 

100Z km we have a peak of U, which it indicates that the 
maximum of U can trigger a major earthquake. From equation 

(20) we can obtain 6.4
S ref

M M  . 
 

 

Figure 2. Parameters of a strong earthquake, Peak of 7
S

M  ,

1
ref

M  , 1 0.30C k Tc  
  

/ 4 /S km s   , 4 / ^ 3S g cm  , 2 10( 4)   0 100Z km  

 

As we can see, the slow rotational tectonic waves propagate 
along the fractured tectonic fault with a speed of about 
kilometers per second. These waves may have a form of 
rotational seismic solitons and they can trigger major 
earthquakes. Thus, the research on rotational seismic solitons 
is essential for investigating the propagation of seismic waves 
and helps understand mechanisms triggering earthquakes. Thus 
chiral rotational seismic waves propagate faster in solid rocks 
and much slower in fractured media along tectonic faults.  
 

Conclusion 
 

In this paper we have obtained the Schrödinger nonlinear 
equation for a channel whose core is chiral, dispersive and has 
nonlinear behavior. The effect of chirality is manifested by the 
terms associated with the loss of the chiral channel and the 
nonlinear coefficient. The phenomena that produces the 
dispersive and non-linear effects in a non-chiral seismic 
channel is the factor C, (which produce the soliton propagation 
for example). The most significant result of our work is that to 
use the chirality of S waves can cancel out the losses and 
nonlinearities of the channel, which would allow us to modify 
radically their behavior as channel of seismic soliton. To 
advance our work we hope to make a deeper theoretical study 
of the effect of chirality in seismic channels considering the 
spread of Gaussian pulses. Numerical calculation of the 
equations can be obtained, so as to analyze the behavior of 
seismic waves modelled by soliton waves. Through numerical 
calculations these theoretical results would allow analyze the 
effects of chirality on the equation for propagation of S-
seismic pulses of strong earthquakes as happened recently in 
Japan Chili and Nepal 

21221                                             Héctor Torres-Silva and Diego Torres Cabezas, Chiral schrödinger soliton for a seismic channel 



REFERENCES  
 

Agrawal, G., Nonlinear Fiber Optics, Academic Press, Inc., 
1995. 

Erofeyev, V. I. 2003. Wave processes in solids with 
microstructure. World Scientific, Singapore 

Gordon, J. P. 1983. Opt. Lett., 8, 596. 
Gutemberg, B. and C. F. Richer, 1956. Ann. Geoph.9,1. 
Hector Torres-Silva, Diego Torres Cabezas, D. 2013. “Chiral 

Seismic Attenuation with Acoustic Metamaterials”, 
Journal of Electromagnetic Analysis and Applications, 
Vol.5 No.1,  

Lakhtakia, A., Varadan, V. K. and Varadan, V. V. 1985. 
”Time-Harmonic Electromagnetic Fields in Chiral Media” 
Lecture Notes in Physics 335, Springer-Verlag. 

Majewski, E., 2008. Canonical approach to asymmetric 
continua, in Physics of Asymmetric Continuum: Extreme 
and Fracture Processes—Earthquake Rotation and Soliton 
Waves, R. Teisseyre, H. Nagahama, and E. Majewski 
(Editors), Springer, Berlin, 209–218. 

Teisseyre, K. P.,  2007. Analysis of a group of seismic events 
using rotational components, Acta Geophys. 55, 535–553. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Teisseyre, R.  2009.  New developments in the physics of 
rotational motions, Bull. Seismol. Soc. Am., 99, no. 2B, 
1028–1039. 

Teisseyre, R., Yamashita, T. 1999. Splitting stress motion 
equations into seismic wave and fault-related fields. Acta 
Geophys Pol., 47: 2, 135-147 

Torres Silva, H., Sakanaka P. H. and Reggiani, N. 1996. 
Revista Mexicana de Física, 42, 989. 

Torres Silva, H., Sakanaka, P. H. and  Reggiani, N.  1997. 
”Electromagnetic properties of a chiral-plasma”, Pramana 
Journal of Physics, 48, 1. 

Torres Silva, H., Sakanaka, P. H. and Reggiani, N. 1998. 
Journal of Physics Society of Japan, 850. 

Torres-Silva, H. and  Souza de Assis, A. 2010. Efectos de 
velocidad y de gravitación en GPS satelitales: un esquema 
para la predicción y detección temprana de fuertes 
terremotos, Ingeniare, Vol. 18, pp 286-294.   

Torres-Silva, H. and Lopez-Bonilla, J. L.  2011. “Early 
Prediction and detection of Strong Earthquakes through 
Chiral Radiation Waves”, Journal of Vectorial Relativity, 
6, 2, 1-11. 

 

******* 

21222                                        International Journal of Current Research, Vol. 7, Issue, 10, pp.21218-21222, October, 2015 


