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In this article numerical investigation of an interesting heat flow problem is discussed using 
Rayleigh Ritz, single
various means. The 
methods are compared with the exact solution of that problem
obtained using RKCeM (Runge
flow problem.
demonstrated with numerical example. Solution graphs for discrete exact solutions are presented 
in a graphical form to show the efficiency of the RKCeM. The results obtained show that RKCeM 
is more useful for solvin
time. 

 

 
 

INTRODUCTION 
 
A mathematical model is adescription of a  system
mathematical concepts and language. The process
developing a mathematical model is termed
modelling. Mathematical models are used not only
sciences (suchas  physics,  biology, earth
meteorology) and engineering disciplines (e.g.
science, artificial intelligence), but also in the social sciences
(such as economics, psychology, sociology
science), physicists, engineers, statisticians,
research analysts and economists use mathematical models 
most extensively. Mathematical models can take many forms, 
including but not limited to dynamical systems,
models, differential equations, or game theoretic models. 
These and other types of models can overlap, with a given 
model involving a variety of abstract structures. In general, 
mathematical models may include logical models, as far as 
logic is taken as a part of mathematics. In many cases, the 
quality of a scientific field depends on how well the 
mathematical models developed on the theoretical side agree 
with results of repeatable experiments. Lack of agreement 
between theoretical mathematical models and experimental 
measurements often leads to important advances as better 
theories are developed. The STWS method and extended 
fourth order RK methods found wide applications in the field 
of optimum control of linear systems with quadratic index,
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ABSTRACT 

In this article numerical investigation of an interesting heat flow problem is discussed using 
Rayleigh Ritz, single-term Walsh series (STWS) method and Runge-Kutta (RK) method based on 
various means. The results (approximate solutions) obtained very accur
methods are compared with the exact solution of that problem. It is 
obtained using RKCeM (Runge-Kutta Centroidal Mean) is closer to the exact solution of the heat 
flow problem. The high accuracy and the wide applicability of RKCeM approach will be 
demonstrated with numerical example. Solution graphs for discrete exact solutions are presented 
in a graphical form to show the efficiency of the RKCeM. The results obtained show that RKCeM 
is more useful for solving the heat flow problem and the solution can be obtained for any length of 
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signal processing, electronic circuits and singular non
systems [1- 7].   In this article, new methods are introduced to 
solve the unsteady one-dimensional heat
ODE, which involve two phases. In phase
dependency of the heat flow equation is eliminated by 
applying the Rayleigh-Ritz method and to determine the 
suitable initial conditions, the Galerkin Technique is utilized. 
In phase II, the resulting system of equations is being solved 
by applying the methods STWS, RKCeM and RKHaM 
(Runge-Kutta Harmonic Mean) to determine the discrete 
solutions of the unsteady heat- flow problem.  Further, to 
analyze the efficiency of the above-
discrete solutions obtained are compared with the exact 
solutions and with the obtained discrete solutions by the 
methods of Laplace Transform and RKAM 
Arithmetic Mean). 
 
PROBLEM AND SOLUTION 
 
Let us consider an unsteady one-
problem (it may be referred as a flow of electricity in cables 
the telegraph problem).  The governing equation of the flow is 
given by  

1  x  0    ,
x

T
    

t

T
2

2









 
       

where T denotes the temperature, t denotes the time, 
denotes the thermal diffusivity and       x denotes the space 
coordinate.   
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The initial and boundary conditions are   

1.0    T(x,0)        (2) 

and 

0  )t,1(
x

T
    t)T(0, 



                 (3) 

 
PHASE I     
 
RAYLEIGH - RITZ METHOD 
 
This method is used for the elimination of spatial dependency 
in eq. (1).  Assuming that T* is the weighting function of T, 
which satisfies the initial and boundary conditions given by 
eqs. (2) and (3), the following weighted residual equation can 
be obtained as (Schechter [8]) 
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After integrating and introducing the boundary conditions 
(3) we obtain 
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Assuming the same function has been applied for T and T*, 
then we define 
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where  1 = x  and 2 = x2.  Substituting eqs. (6) and (7) into 
eq. (5) we obtain 
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Eq. (8) can be expressed as  

0   C(t) B  )t(' CA  
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Evaluating the indicated integration, we get 
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GALERKIN METHOD 
 
To solve the system, we need some initial conditions for C1 
and C2, since in the present approximation, the initial 
condition T(X, 0) = 1 cannot be satisfied.  We then represent 
the residual of the approximation with the initial condition as 
(Schechter [8]) 
E1  =  T(x,0) –1  =  xC1(0) + x2C2(0) – 1            (11) 

Now, employing the Galerkin method, we get 

  
1

0

2
2

1 0  dx   x 1 - )0(  x  )0(Cx C      (12) 

  
1

0

2
2

2
1 0  dx    x1 - )0(  x  )0(Cx C     (13) 

Solving eqs. (12) and (13), we obtain 
 
C1(0) = 4,     C2(0) = -10/3                  (14) 
 
Hence, for the problem (1), the spatial dependency of the heat 
flow has been eliminated by applying the Rayleigh-Ritz 
method thereby reducing the problem to a system of linear 
first order differential equations (10) whose initial conditions 
are given in (14). 
 
PHASE II  -  COMPUTATION OF C1(t) AND C2(t) 
 
Here, numerical methods namely STWS and fourth order RK 
methods based on AM, CeM and HaM, have been introduced 
to calculate C1(t) and C2(t) for the system (10).     
 
SINGLE TERM WALSH SERIES (STWS) TECHNIQUE 
 

Consider the system of linear differential equations         

u(t) B    A x(t)    (t)'xK               (15)    

with           x(0) = x0.  
 
where K and A are  n x n matrices, B is an n x r matrix, x(t) is 
an n-state vector, and u(t) is an r-input vector.  In this 
technique, the given function is expanded as a single - term 
Walsh series in the normalized interval τ [0.1), which 
corresponds to t  [0.1/m) by defining t = τ/m, m being any 
integer. The following are the recursive relations, in STWS 
method, to determine the discrete solution for the system (15). 
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Then, x(i) will give the discrete values of the state and Pi gives 
the Block Pulse Function (BPF) values of the state to any 
length of time.  The main advantage of this method is that if 

the matrix K in (15) is singular, this difference 




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turns out to be non-singular.  Hence, the inverse of the matrix 
can be computed. 
 
The state – space equation (10) is 
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with                  C(0)  =  [C1(0)  C2(0)]T  =  [4   –10/3]T. 
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Table 1. Variation of T(x,t) for 2 = 0.5 
 
 

Value of   x =  0.5 

Time Exact Laplace RKAM RKCeM RKHaM STWS 

0.20 0.7354 0.7220 0.7219 0.7219 0.7218 0.7201 

0.40 0.5529 0.5555 0.5555 0.5555 0.5554 0.5553 

0.60 0.4295 0.4329 0.4329 0.4329 0.4329 0.4328 

0.80 0.3353 0.3376 0.3376 0.3376 0.3376 0.3375 

1.00 0.2619 0.2633 0.2633 0.2633 0.2633 0.2632 

1.20 0.2046 0.2053 0.2054 0.2054 0.2053 0.2053 

1.40 0.1598 0.1601 0.1602 0.1602 0.1601 0.1601 

Value of   x =  1.0 

0.20 0.9488 0.9820 0.9820 0.9821 0.9819 0.9863 

0.40 0.7717 0.7843 0.7844 0.7844 0.7843 0.7846 

0.60 0.6062 0.6124 0.6125 0.6125 0.6124 0.6123 

0.80 0.4739 0.4777 0.4777 0.4777 0.4776 0.4775 

1.00 0.3703 0.3725 0.3725 0.3726 0.3725 0.3724 

1.20 0.2892 0.2905 0.2905 0.2906 0.2905 0.2904 

1.40 0.2260 0.2266 0.2266 0.2266 0.2266 0.2265 
 

Table 2. Variation of T(x,t) for 2 = 0.75 
 

Value of   x =  0.5 

Time Exact Laplace RKAM RKCeM RKHaM STWS 

0.20 0.6322 0.6306 0.6306 0.6307 0.6304 0.6293 

0.40 0.4295 0.4330 0.4329 0.433 0.4328 0.4327 

0.60 0.2963 0.2982 0.2982 0.2982 0.2981 0.2979 

0.80 0.2046 0.2055 0.2054 0.2054 0.2053 0.2051 

1.00 0.1413 0.1414 0.1414 0.1415 0.1414 0.1412 

1.20 0.0975 0.0974 0.0974 0.0974 0.0974 0.0973 

1.40 0.0673 0.0671 0.0671 0.0671 0.0671 0.0670 

Value of   x =  1.0 

0.20 0.8637 0.8843 0.8843 0.8844 0.8840 0.8867 

0.40 0.6062 0.6124 0.6125 0.6125 0.6122 0.6122 

0.60 0.4189 0.4218 0.4219 0.4219 0.4217 0.4215 

0.80 0.2892 0.2905 0.2905 0.2906 0.2904 0.2902 

1.00 0.1997 0.2001 0.2001 0.2001 0.2000 0.1998 

1.20 0.1379 0.1378 0.1378 0.1378 0.1378 0.1376 

1.40 0.0952 0.0950 0.0949 0.0949 0.0949 0.0947 

 

Table 3. Variation of T(x,t) for 2 = 1.0 
 
 

Value of   x =  0.5 

Time Exact Laplace RKAM RKCeM RKHaM STWS 

0.20 0.5529 0.5555 0.5555 0.5556 0.5551 0.5548 

0.40 0.3353 0.3376 0.3376 0.3377 0.3374 0.3372 

0.60 0.2046 0.2054 0.2054 0.2054 0.2052 0.2050 

0.80 0.1249 0.1249 0.1249 0.1249 0.1248 0.1246 

1.00 0.0762 0.0760 0.0760 0.076 0.0759 0.0757 

1.20 0.0465 0.0463 0.0462 0.0462 0.0462 0.0460 

1.40 0.0284 0.0281 0.0281 0.0281 0.0281 0.0280 

Value of   x =  1.0 

0.20 0.7717 0.7844 0.7844 0.7846 0.7838 0.7848 

0.40 0.4739 0.4777 0.4777 0.4778 0.4774 0.4771 

0.60 0.2892 0.2906 0.2905 0.2906 0.2904 0.2900 

0.80 0.1765 0.1767 0.1767 0.1768 0.1766 0.1763 

1.00 0.1077 0.1075 0.1075 0.1075 0.1074 0.1071 

1.20 0.0657 0.0654 0.0654 0.0654 0.0653 0.0651 

1.40 0.0401 0.0398 0.0398 0.0398 0.0397 0.0396 
 

Table 4. Variation of T(x,t) for 2 = 2.0 
 
 

Value of   x =  0.5 

Time Exact Laplace RKAM RKCeM RKHaM STWS 

0.20 0.3353 0.3376 0.3376 0.3381 0.3363 0.3366 

0.40 0.1249 0.1249 0.1249 0.1251 0.1244 0.1236 

0.60 0.0465 0.0462 0.0462 0.0463 0.0460 0.0455 

0.80 0.0173 0.0171 0.0171 0.0171 0.0170 0.0167 

1.00 0.0064 0.0063 0.0063 0.0063 0.0063 0.0062 

1.20 0.0024 0.0023 0.0023 0.0023 0.0023 0.0023 

1.40 0.0009 0.0009 0.0009 0.0009 0.0009 0.0008 

Value of   x =  1.0 

0.20 0.4739 0.4777 0.4777 0.4784 0.4758 0.4734 

0.40 0.1765 0.1767 0.1767 0.177 0.1760 0.1749 

0.60 0.0657 0.0654 0.0654 0.0655 0.0651 0.0644 

0.80 0.0245 0.0242 0.0242 0.0242 0.0241 0.0237 

1.00 0.0091 0.0090 0.0089 0.009 0.0089 0.0087 

1.20 0.0034 0.0033 0.0033 0.0033 0.0033 0.0032 

1.40 0.0013 0.0012 0.0012 0.0012 0.0012 0.0012 
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with C(0) = [ 4  -10/3]T.  Applying the STWS approach, the 
following recursive relationship is obtained.   
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Table 5 Absolute Error in T(x,t) for 2 = 0.5 
 

W
h

en
 x

 =
 0

.5
 

Time Laplace RKAM RKCeM RKHaM STWS 
0.3353 0.0134 0.0134 0.0134 0.0135 0.0135 
0.1249 0.0026 0.0026 0.0026 0.0025 0.0026 
0.0465 0.0034 0.0034 0.0034 0.0033 0.0034 
0.0173 0.0023 0.0023 0.0023 0.0023 0.0023 
0.0064 0.0014 0.0014 0.0014 0.0014 0.0014 
0.0024 0.0007 0.0008 0.0008 0.0007 0.0008 
0.0009 0.0003 0.0003 0.0003 0.0003 0.0003 

W
h

en
 x

 =
 1

.0
 

 

0.3353 0.3376 0.3376 0.3381 0.3363 0.3366 
0.1249 0.1249 0.1249 0.1251 0.1244 0.1236 
0.0465 0.0462 0.0462 0.0463 0.0460 0.0455 
0.0173 0.0171 0.0171 0.0171 0.0170 0.0167 
0.0064 0.0063 0.0063 0.0063 0.0063 0.0062 
0.0024 0.0023 0.0023 0.0023 0.0023 0.0023 
0.0009 0.0009 0.0009 0.0009 0.0009 0.0008 

 

Table 6. Absolute  Error in T(x,t) for 2 = 0.75 
 

W
h

en
 x

 =
 0

.5
 

 

Time Laplace RKAM RKCeM RKHaM STWS 
0.20 0.0016 0.0017 0.0016 0.0019 0.0017 
0.40 0.0035 0.0034 0.0034 0.0032 0.0034 
0.60 0.0019 0.0018 0.0019 0.0017 0.0018 
0.80 0.0009 0.0008 0.0008 0.0007 0.0008 
1.00 0.0001 0.0002 0.0002 0.0001 0.0002 
1.20 0.0001 0.0001 0.0001 0.0002 0.0001 
1.40 0.0002 0.0003 0.0002 0.0003 0.0003 

W
h

en
 x

 =
 1

.0
 

 

0.20 0.0206 0.0207 0.0208 0.0204 0.0207 
0.40 0.0062 0.0063 0.0063 0.006 0.0063 
0.60 0.0029 0.003 0.003 0.0028 0.0029 
0.80 0.0013 0.0013 0.0013 0.0012 0.0013 
1.00 0.0004 0.0004 0.0004 0.0003 0.0004 
1.20 0.0001 0.0001 0 0.0001 0.0001 
1.40 0.0002 0.0003 0.0003 0.0003 0.0003 

 

Table 7. Absolute  Error in T(x,t) for 2 = 1.0 
 

W
h

en
 x

 =
 0

.5
 

 

Time Laplace RKAM RKCeM RKHaM STWS 
0.20 0.0026 0.0026 0.0208 0.0022 0.0026 
0.40 0.0023 0.0023 0.0063 0.0021 0.0023 
0.60 0.0008 0.0008 0.0030 0.0006 0.0007 
0.80 0.0000 0.0000 0.0013 0.0000 0.0000 
1.00 0.0002 0.0002 0.0004 0.0003 0.0002 
1.20 0.0002 0.0003 0.0000 0.0003 0.0003 
1.40 0.0003 0.0003 0.0003 0.0003 0.0003 

W
h

en
 x

 =
 1

.0
 

 

0.20 0.0127 0.0127 0.0128 0.0121 0.0127 
0.40 0.0038 0.0038 0.0039 0.0034 0.0038 
0.60 0.0014 0.0013 0.0014 0.0011 0.0013 
0.80 0.0002 0.0002 0.0002 0.0001 0.0002 
1.00 0.0002 0.0002 0.0002 0.0003 0.0002 
1.20 0.0003 0.0004 0.0003 0.0004 0.0004 
1.40 0.0003 0.0004 0.0003 0.0004 0.0004 

 

Table 8. Absolute  Error in T(x,t) for 2 = 2.0 
 

W
h

en
 x

 =
 0

.5
 

 

Time Laplace RKAM RKCeM RKHaM STWS 
0.20 0.0023 0.0023 0.0028 0.0010 0.0023 
0.40 0.0000 0.0000 0.0002 0.0004 0.0000 
0.60 0.0003 0.0003 0.0002 0.0005 0.0003 
0.80 0.0002 0.0002 0.0002 0.0003 0.0002 
1.00 0.0001 0.0001 0.0001 0.0001 0.0001 
1.20 0.0001 0.0001 0.0001 0.0001 0.0001 
1.40 0.0000 0.0000 0.0000 0.0000 0.0000 

W
h

en
 x

 =
 1

.0
  0.20 0.0038 0.0038 0.0045 0.0019 0.0037 

0.40 0.0002 0.0002 0.0005 0.0005 0.0002 
0.60 0.0003 0.0004 0.0003 0.0006 0.0004 
0.80 0.0003 0.0003 0.0003 0.0004 0.0003 
1.00 0.0001 0.0002 0.0002 0.0002 0.0002 
1.20 0.0001 0.0001 0.0001 0.0001 0.0001 
1.40 0.0000 0.0000 0.0000 0.0000 0.0000 
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 1)-(i C     
2

 R
         P i

i                       (19) 

C(i)  =   Ri  +  C( i -1) 

where   1) - (i C B . 
m

         S
2

i


  

and  i = 1, 2, 3, … the interval number.  The discrete and 
Block Pulse Function (BPF) values of C(t) are obtained from 
C(i) and Pi, to any length of time.  To obtain the discrete 
solutions, via extended RK methods, we write the system of 
eqs. (10) explicitly as : 
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15

700
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EXTENDED RUNGE - KUTTA METHOD BASED ON 
AM 

The general p-stage RK method for solving  x)(t, f    x 


is 

defined by  
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where b and c are  p-dimensional vectors and the matrix A  = 
(aij) is of order (p x p). Hence the fourth order RK method for 
solving an IVP of the form  

    x)(t, f    x 


  with   x (0)   =   x0     

can be formulated as 
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In the initial iteration, we get   
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Fig.1.  Error graph for x = 1.0 at t = 1.4                  

 
EXTENDED RUNGE - KUTTA METHOD BASED ON 
CEM  
 
In [1 – 3, 10-11], Evans and Yaakub have developed a new 
RK method of order 4 based on Centroidal mean to solve first 
order equation and it is to be noted that the Centroidal Mean 
of two points x1 and x2 is defined as 
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Consider the first order equation (2.1) of the form 

y) f(x,         'y          

     

with .y       )x(y 00   

 Let h denote the interval between equidistant values 
of x.  The fourth order RKAM formula (2.21) can be written 
as  
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and substituting the arithmetic mean (AM) of ki,  1   i    6 
with their Centroidal Means        we obtain a new formula, 
similar to the above equation, as 
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to obtain the fourth order formula in the form, 
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while the Taylor series expansion of y(xn+1) may be given as, 
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Hence 
LOWER

UPPER
   -  TAYLOR          ERROR   

or, (TAYLOR  x  LOWER)  -  UPPER   =   (LOWER  x  
ERROR). 
 
EXTENDED RUNGE - KUTTA METHOD BASED ON 
HAM 
 
In the development of methods for solving ordinary 
differential equations, it is not clear whether the arithmetic 
mean is always the best choice.  Naturally RK formulae, based 
on arithmetic mean, are the most convenient and flexible to 
apply.  But there is no guarantee that they would yield more 
accurate results for all type of problems.  Hence, the use of 
harmonic means in the functional values instead of the usual 
arithmetic mean may result in better accuracy for a certain 
class of problems.  It may be noted that the harmonic mean of 
two quantities x1 and x2 is given by  
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21

 x x

x x2


 

 

In [11], it has been shown that the use of harmonic means in 
the functional values, instead of the usual arithmetic mean in 
the trapezoidal formula has also produced a formula with an 
accuracy of order -2. 
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The local truncation error (LTE) for the eq. (21) is given by 
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It is possible to establish a 4-stage non-linear RK formula 
based on harmonic mean (RKHM) in the form  
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i.e., 
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as a direct extension of eq. (20), where   
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Applying the formula of RKAM, RKCeM and RKHaM 
discussed in 4.2 - 4.4, the discrete solutions of (20) have been 
obtained, taking the step-size as h = 0.01, for different values 
of 2. 
 

DISCUSSION 
 
Solving eq.(20) by the Laplace – Transform, the analytic 
expressions for C1(t) and C2(t) are                   

t 2.486 -t -32.1807
1 e 2.3592   e 1.6408      )t(C

    

                         

 t 2.486 -t -32.1807
2 e 1.068   e 2.265 -     )t(C

        (21) 

 
The exact solution of eqs. (1) which satisfies the initial and 
boundary conditions given by eqs. (2) and (3) is obtained as 
(refer Ritger and Rose [115]). 
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where  /2)( 1)(2n     n   

 
The numerical values of T(x,t), with different values of 2 = 
0.5, 0.75, 1.0 and 2.0 based on the value of x = 0.5 and  0.1, 
have been obtained by the methods of Ritz-Laplace 
Transform,  Ritz-RKAM, Ritz-RKCeM, Ritz-RKHaM and the 
Ritz-STWS, and are respectively shown in Tables 1 – 4, 
together with their corresponding exact solutions. Also, the 
discrete solutions obtained by the methods RKAM and 
RKHaM, for the values of C1(t) and C2(t) of the eqs. (10), 
coincide well with the solutions obtained by the Laplace 
Transform.  The numerical values of T(x,t), with different 
values of 2 = 0.5, 0.75, 1.0 and 2.0 based on the value of  x = 
0.5 and  0.1, have been obtained by these two methods and are 
in good agreement with the exact solution (20). The obtained 
absolute error using the methods of Ritz-Laplace Transform, 
Ritz-RKAM, Ritz-RKCeM, Ritz-RKHaM and Ritz-STWS are 
given in Tables 5 – 12.  For a sample, an error graph for x = 1 
at time t = 1.4 is shown in Figure 1.   
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CONCLUSIONS 
 
As an outcome of this study, new methods have been proposed 
for the investigation of heat-flow problem.  The novel features 
of the present numerical schemes are the adoption of the 
Rayleigh – Ritz technique for the elimination of spatial 
dependency in the heat flow equation, the STWS and RK 
techniques for solving the resulting system of first order linear 
equations in time, and the Galerkin method for determining 
the initial conditions.   
 
It is observed that Ritz-Laplace Transform, Ritz-STWS, Ritz-
RKAM, Ritz-RKCeM and Ritz-RKHaM yield similar results. 
Reviewing these methods, applied for the heat-flow problem, 
it is clearly noticeable that Ritz-STWS, Ritz-RK methods 
involve less number of computations and the complexity of 
these methods are very simple. It is also to be noted that from 
Figure 1, the analytical method of Laplace Transform stands 
first, in respect to accuracy.  However, RKCeM is found to 
yield better results among the other RK methods and STWS 
technique. 
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