

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 7, Issue, 12, pp.23966-23968, December, 2015 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

# **RESEARCH ARTICLE**

## **STUDIES ON COLLAR - ROT IN TUBEROSE**

## Dibya Sundar Kar, \*AnitaMohanty and Pravasini Behera

KVK, Dhenkanal, OUAT, Bhubaneswer, KVK, Puri, OUAT, Bhubaneswer, College of Agricultlure, OUAT, Bhubaneswer, Odisha, India

| ARTICLE INFO                                                                                                                                                                                                                       | ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>Article History:</i><br>Received 15 <sup>th</sup> September, 2015<br>Received in revised form<br>19 <sup>th</sup> October, 2015<br>Accepted 05 <sup>th</sup> November, 2015<br>Published online 30 <sup>th</sup> December, 2015 | Collar rot is a serious disease of tube rose (Polianthes tuberose L.) caused by Sclerotium rolfsii Sacc. reported in Odisha. The malady is rapidly gaining momentum inflicting heavy damage to this commercial ornamental crop. To study about this disease, with a chain of operations like planting material collection, isolation of pathogens, sterilisation of glassware, preparation of different media and inoculation in the media were conducted. Out of seven inoculation methods compared, artificial inoculation was highly successful, when inoculums mixed in top 2-3 cm soil and covered with leaf |
| Key words:                                                                                                                                                                                                                         | debris of tuberose. Ground nut shell and Sorghum grain media supported maximum Sclerotia and mycelia growth of the fungus.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Collar rot, Tube rose,                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

*Copyright* © 2015 *Dibya Sundar Kar et al.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

*Citation:* Dibya Sundar Kar, AnitaMohanty and Pravasini Behera, 2015. "Studies on collar -rot in tuberose", *International Journal of Current Research*, 7, (12), 23966-23968.

# **INTRODUCTION**

Inoculation Sclerotia and mycelia.

Tuberose (Polianthes tuberose L.) has gained considerable importance among bulobous ornaments for the prettiness, elegance and sweet fragrance of its flowers. It has tremendous economy potential in cut -flower trade and perfumary industry. The flower remain fresh for pretty long time and stand long distance transportation. The flowers are used for making garlands, floral ornamental, bouquets and button holes. The long flowering spikes are excellent for table decoration arranged in bowls and vases. Variegated type is very attractive and suitable for the garden for beautification. Like any other crops, tuberose also suffers from several diseases. Of these Collar-rot is one. The disease often known as stem rot, sclerotial-rot or sclerotial wilt. This destructive disease tuberose was for the first time described from West Bengal of India (Das, 1961). The causal fungus was reported to be Sclerotium rolfsii Sacc. Its occurrence was also recorded from Ranchi area of Bihar (Dutta, 1975). In Orissa, the malady is rapidly gaining momentum inflicting heavy damage to this valuable commercial; ornamental crop in recent years. The disease causes rotting of leaves, bulbs and flowering shoot leading to mortality of entire clump.

\*Corresponding author: AnitaMohanty, KVK, Puri, OUAT, Bhubaneswer, Odisah,India. With the increase of area and intensive cultivation of susceptible varieties, the disease is likely to be accentuated in near future. Hence a necessary study is likely to be accentuated in near future.

## **MATERIALS AND METHODS**

Different operations were conducted to study about the pathogen causing collar - rot in tube rose.

### **Collection of planting materials**

The plant samples were collected from farmer's field. Each sample was labelled properly and taken into laboratory for examination of incidence of collar rot caused by *Sclerotium rolfsii*.

#### **Isolation of Pathogens**

With the moist blotter method recommended by ISIA (1953,1961), the diseased plant sample collected were washed and diseased collar parts were cut into pieces which were then washed and diseased collar parts were cut into pieces which were then disinfected with 1:1000 (0.1%) mercuric chloride solution. These were transferred to PDA slants after several washing in sterile water and incubated at  $28^{\circ}C+1^{\circ}C$ . The

culture were maintained by sub-culturing time to time PDA slants.

The pure culture was obtained by transferring a young immature white Sclerotium from culture tube to a fresh PDA slant and incubated for 9-10 days. From this culture a young white Sclerotium was again transferred to sterilised PDA slant. Thus a pure culture was obtained and maintained by sub culturing.

### **Preparation different Media**

Potato dextrose medium was prepared by boiling 200g of peeled sliced potato in 500ml of distilled water. 20 g of agar ager was added in another 500 ml of water an stirred properly then added 20 g dextrose and the final volume was adjusted to 1 lit by adding potato decanded solution.

Different natural media like sorghum grain medium(SGM),wheat grain medium (RSM),rice straw medium (RSM) and sand maize meal medium SMM) were prepared by taking 100 g grains ,shell or straw , soaked in water for about 6 hrs. They were sterilized separately in 250 ml Erienmeyer flask at  $121^{0}$ C for 45 minutes. Sand maize meal medium was prepared as above taking 90 g of fine sand,10g of maize meal in which 20 ml of water was added.

#### Inoculation in the media

Each flask was seeded with a mycelia disc (5mm) from a 7 days old culture of S.rolfsii grown in PDA and incubated at  $28+1^{\circ}$ C for 3 weeks. The flask was used for each medium and each flask was considered as one replication.

#### Pathogenicity

To prove the pathogenicity of the fungus seven inoculation methods were tested such as (1) sclerotia mixed in entire soil, (2) sclerotia mixed in top 2-3 cm soil, (3) sclerotia mixed in 2-3 cm soil and covered with leaf debris, (4) sclerotia spread on surface soil, (5) sclerotia spread on surface soil and covered with leaf debris. (6) Mycelia propagules placed in the plant collar region and (7) mycelia propagules placed in plant collar region and covered with leaf debris, an compared with suitable check without any inoculation. The plants were raised in 15 cm pots filled with sterised soil autoclaved with at 1210C for 45 minutes for consecutive two days. Five bulbs were planted in each pot and two pots were taken as one replicate.

## **RESULTS AND DISCUSSION**

Morphology and cultural characterstics of the fungus was described in detail. Seven methods of inoculation were tried to prove the pathogenicity of the fungus and see their effectiveness. All the methods of inoculation tested successfully caused infection and expressed disease symptoms on inoculated host plants. However, no disease symptoms were seen in un-inoculated control plants until end of the experiment. Maximum infection of 100% was achieved where sclerotia were mixed in top 2-3 cm soil and covered with leaf debris of tube rose (Table 1). Mycelial propagules placed in plant collar region and covered with leaf debris of tube rose and sclerotia mixed in top 2-3 cm layer of soil also proved successful in creating high disease incidence. All other methods of inoculation produced satisfactory infection except the method where sclerotia mixed in entire soil and sclerotia spread on surface soil. High incidence and rapid symptom development in this method of inoculation may be ascribed due to easy availability of

### Table 1. Effect of different methods of inoculation of Sclerotium rolfsii in causing collar-rot in tube rose

| Methods of inoculation                                                              | Plant infection (%) | Incubation period (days) |
|-------------------------------------------------------------------------------------|---------------------|--------------------------|
| Sclerotia mixed in entire soil                                                      | 26.7 (30.99)        | 17                       |
| Sclerotia mixed in top 2-3 cm soil                                                  | 83.3 (70.07)        | 9                        |
| Sclerotia mixed in top 2-3 cm soil and covered with leaf debris of tuberose         | 100.0 (90)          | 7                        |
| Sclerotia spread on surface soil                                                    | 36.7 (37.22)        | 15                       |
| Sclerotia spread on surface soil and covered with leaf debris of tuberose           | 70.0 (57.00)        | 11                       |
| Mycelia propagules placed in plant collar region                                    | 72.0 (58.05)        | 11                       |
| Mycelia propagules placed in collar region and covered with leaf debris of tuberose | 84.0 (70.07)        | 9                        |
| Control                                                                             | 0                   | 0                        |
|                                                                                     | (0)                 |                          |
| SE(m) +                                                                             | (5.88)              |                          |
| $C.D.(0.\overline{05})$                                                             | (18.11)             |                          |

Figures in prenthes represent log transformed value

| Culture media                 | Number of Sclerotia | Mycelial growth |
|-------------------------------|---------------------|-----------------|
| Sorhum grain medium (SGM)     | 656.6696.48)        | +++             |
| Wheat grain medium(WGM)       | 210.00(5.34)        | +++             |
| Ground nut Shell medium(GSM)  | 2044.00(7.62)       | ++              |
| Rice Straw medium(RSM)        | 403.33 (5.99)       | +               |
| Sand- Maize meal medium (SMM) | 1367.33 (7.21)      | +               |
| Potato dextrose medium (PDA)  | 746.66 (6.61)       | +++             |
| SE (m) +                      | (0.18)              |                 |
| C.D. (0.05)                   | (0.12)              |                 |

Figures in prenthes represent log transformed value

senescent plant tissue and a warm moist environment created near the base of the plant due to moisture conservation by mulching of leaf debris. It was from the table 2 that, the fungus was successfully isolated on potato dextrose agar from the infected leaf and stem.

The morphological characters of the fungus in diseased sample and in pure culture as regards to its mycelia growth was radiating with much aerial hyphae and aggregated to form rhizomorph. Hyphae were hyaline, septate and thinned walled. Clamp connection were formed frequently. Branching were at an acute angle. Sclerotia were almost round and dark coloured and found embded in host tissues. Similar morphological characters of *S. rolfsii* was described by earlier workers (Das, 1961, Das, 2002, Mukhopadhyay, 1971; Saccardo, 1911) very well matched with the present finding.

Shew and Beute (1984) opined similar view while conducting experiment on S. rolfsii in groundnut. Further a thin layer covering might have fascinated aeration and moisture conservation providing congenial condition for high infection. This method may be useful in testing varietal resistance in large scale in field condition. High infection was also recorded where mycelia propagules were placed in the collar region and covered with plant debris or scelortia mixed in the top 2-3 cm soil. Placing propagules of S. rolfsii is a cumberson and laborious process. This method may not be adopted for mass screening of variety for above reason Pandey et al. (1994) achieved success in infecting ground nut employing above method. Chiranjeebi et al. (1981) and Kondey et al.(2008) also reported the effectiveness of mixing of scelorotia of S. Rolfsii in top soil creating artificial epipaytotics of stem- nut of Groundnut.

Out of six media compared for sclerotia production and mycellial are growth of *S. rolfsii*, ground nut shell medium (GSM) supported maximum scleorotial production followed by sand maize meal medium (SMM). Sorghum (SGM) and wheat grain medium (WGM) and encouraged good mycellial growth than scleorotial production. The finding corroborates with those of Pandey *et al.* (1994, Dutta, 2002) who claimed higher production of scelorotia of *S. rolfsii* in GSM and good mycellial growth in Sorghums grain medium (SGM).

The ability of G.nut shell medium (SGM) to support sclerotial production compared to sorghum or wheat grain medium may be attributed to the lower weight (Volume to weight ratio) of substrate as compared to Sorghums grain as observed by Boyle (1961).

So it was concluded that out of seven methods of inoculation, maximum infection occurred where sclerotia were mixed in top 2-3 cm soil and covered with leaf debris.Out of six culture media highest mycelia growth was observed in sorghum grain medid followed by wheat grain media.

### REFERENCES

- Chinerajeevi, V., Hari, B.V.S.C. and Sitaramaiah, K. 1989. Comparision of different methods of inoculation to induce collar-rot of groundnut caused by Sclerotium rolfsii Sacc. *Indian J.Mycol.Pl.Pathol.*19:285.
- Das, A.C. 1961. Diseases of Rajanigandha (Polyanthes tuberose L) nd Larkspur caused by *Sclerotium rolfsii sacc*. *Sca and Cult*.27:540-550.
- Das, B.C., Dutta P, Devi G and Dutta P. 2000. Management of Sclerotium rolfsii in tomato by fungal antagonists. J. Agri. Sci. Soc. North East India, 13: 101-103
- Dutta, P., Das, B. and Dutta, P. 2002. Management of collar rot of tomato by *Trichoderma* spp. And chemicals. *Indian Phytopath* 55: 235-237.
- Dutta, B.K. 1975. Sclerotium wilt of polyanthes and Caladium and their control Sce, & Cult.:424.
- Konde, S.A., Raut, B.T., Panzade, S. and Ingle, S.A. 2008. Management of collar rot disease in soyabean, *J.plant.*, *Dis. Sci.*, 3:81-83.
- Mukhopadhya, A.N. and Thakur, R.P. 1971. Control of Sclerotium root-rot of sugarbeet with systemic fungicides. Plant Dis. Reptr.55:630-634.
- Pandey, S., Narayana Rao, J., Reddy, M.V. and McDonald, D. 1994. A technique to screen for resistance to stem rot caused by Sclerotium rolfsii wilt of groundnut. Pesticides.16:23-24.
- Shew, B.B. and Beate, M.K. 1984. Effects and crop management on the epidemiology of southern stem-rot of peanut. *Phytopathology*, 74:530-535.

\*\*\*\*\*\*