

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 8, Issue, 01, pp.25572-25575, January, 2016 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

FREQUENCY AND DISTRIBUTION OF A₂ AND A₂B SUBGROUPS AMONG BLOOD DONORS AT MGM KAMOTHE BLOOD BANK, NAVI MUMBAI

^{*,1}Dr. Mehra Ruhi, ¹Dr. Gupta Seema, ¹Dr. Maheshwari Ujwala and ²Dr. Jain Atul

¹Department of Immunohaematology & Blood Transfusion, MGM Medical College & Hospital, Kamothe, Navi Mumbai, Maharashtra, India

²Department of Pathology, MGM Medical College & Hospital, Kamothe, Navi Mumbai, Maharashtra, India

ARTICLE INFO	ABSTRACT			
Article History: Received 16 th October, 2015 Received in revised form 24 th November, 2015 Accepted 25 th December, 2015 Published online 31 st January, 2016	 Background: Group A individuals are further subdivided into A₁, A₂ and other rare types like A₃, A intermediate (int.), A_x, A_m, A_{end}, A_y, A_{el}, etc. Subgroups of A can result in discrepancy in ABO blood typing. The occurrence of weak variants due to heterogeneity of the A and B alleles poses a challenge for immunohaematology practice. Materials and Methods: A retrospective study of 2.5 years from January 2013 to July 2015 carried out at the Department of Immunohaematology & Blood Transfusion of MGM Hospital, Kamothe, 			
<i>Key words:</i> A subgroups, Blood donors, Forward grouping, Reverse grouping, Immunohaematology, Blood transfusion.	 Navi Mumbai. Data has been collected from blood bank donor grouping records. All blood samples processed during period of observation were included in the study. Results: Blood group records of 9,539 whole blood donors were analysed. It was found that out of total 9,539 donors 3,986 (41.78%) belonged to A₁ subgroup and 68 (0.71%) belonged to A₂ subgroup. 672 (7.04%) belonged to A₁B subgroup and 72 (0.76%) belonged to A₂B subgroup. Conclusion: Identification & recording of subgroups is important. Weak subgroups of A antigen red cells may be mistyped as group O or B which might led to transfusion reactions in a few cases. 			

Copyright © 2016 Mehra Ruhi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Mehra Ruhi, Gupta Seema, Maheshwari Ujwala and Jain Atul, 2016. "Frequency and distribution of A₂ and A₂B subgroups among blood donors at mgm kamothe blood bank, Navi Mumbai", *International Journal of Current Research*, 8, (01), 25572-25575.

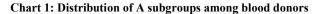
INTRODUCTION

A century ago the first blood group system ABO was discovered. The occurrence of its weaker variants due to heterogeneity of the A and B alleles still poses an enigma for immunohematologists. The ABO locus on the long arm of chromosome 9 codes for blood group specific transferases which transfer N-acetyl D-galactosamine and/or D-galactose sugar terminally to the H antigen for the formation of A and/or B antigen respectively. Subgroups in the system are due to polymorphisms in the genes coding for the A gene which leads to diminished amounts of A antigens on red blood cells. The importance of subgrouping is that the A antigens in various subgroups may differ both quantitatively and qualitatively (Thakral *et al.*, 2005). Group A individuals are further subdivided into A_1 , A_2 and other rare types like A_3 , A

*Corresponding author: Dr. Mehra Ruhi,

Department of Immunohaematology & Blood Transfusion, MGM Medical College & Hospital, Kamothe, Navi Mumbai, Maharashtra, India. intermediate (int.), A_x , A_m , A_{bantu} , A_{end} , A_y , $A_{finland}(fin)$, A_{el} , A_h (H- partially deficient, non-secretor), and A_{weak} . The 2 major subgroups A_1 and A_2 are differentiated on the basis of reactivity of A_1 cells but not A_2 cells with anti- A_1 lectin (Dolichosbiflorus) (Landsteiner and Levine, 1930). Group A red cells which react with both anti-A and Anti- A_1 are classified as A_1 which constitute approximately 80% of entire A blood group population. Group A cell which react with anti-A and not agglutinate with anti- A_1 are classified as A_2 , making up of remaining 20% (Blood Group A Suptypes, 2008).

Anti- A_1 antibody appears as an atypical cold agglutinin in the sera of few A_2 or A_2B individuals who lack the corresponding antigen. Weak subgroups of A can be defined as those of group A subjects whose erythrocytes give weaker reactions or are non-reactive serologically with anti-A antisera than do those of subjects with A_2 red blood cells (Cartron *et al.*, 1974). Subgroups of A can result in discrepancy in ABO blood typing. The occurrence of weak variants due to heterogeneity of the A and B alleles poses a challenge for immunohaematology practice.


MATERIALS AND METHODS

Blood grouping records of 9,539 whole blood donors from January 2013 to July 2015 at MGM Kamothe blood bank were analysed. ABO and Rh-D grouping was carried out by conventional test-tube technique. The donor RBCs were washed thrice with 0.9% normal saline. Forward or cell grouping was done using monoclonal antisera anti-A, anti-B and anti-D (ERYSCREEN, Tulip Diagnostics; Goa, India). It was performed by taking one drop of 5% cell suspension mixed with two drops of anti-serum, centrifuged for one minute at 1000 revolution per minute (rpm). The results were then examined macroscopically and also under microscope for confirmation of agglutination. Reverse or serum grouping was done using in-house prepared pooled A cells, B cells and O cells. All the laboratory techniques were carried out according to the manufacturers' instructions. Blood groups were interpreted based on the agglutination pattern seen with forward and reverse grouping. Samples of group A and AB were further tested with anti-A1 lectin (ERYBANK, Tulip Diagnostics; Goa, India) to classify them into A₁, A₂ and weak A subgroups. Whenever the agglutination was 4+ with anti-A antisera but negative with anti-A1 lectin, the sample was considered as A2 subgroup. A weak reaction with anti-A antisera on cell grouping along with a negative result with lectin was taken to signify a weak subgroup of A. Serum of A₂ and A₂B blood group individuals was tested with pooled A₁ cells at Room temperature and at 37°C for the presence of anti- A_1 antibody.

Agglutination was graded according to the American Association of Blood Banks standards: one solid agglutinate was graded as 4+, several large agglutinates as 3+, medium size agglutinates with a clear background as 2+ and small agglutinates with a turbid background as 1+; very small agglutinates with a turbid background were graded as weak reaction (Wk) and mixtures of agglutinated and un-agglutinated red blood cells as mixed field (mf) (Brecher, 2002). All the results were interpreted by trained immunohaematologists.

RESULTS

Blood group records of 9,539 whole blood donors over the past two and a half years from January 2013 to July 2015 at MGM Kamothe Blood Bank were analysed. It was found that out of total 9,539 donors 3,986 (41.78%) belonged to A1 subgroup and 68 (0.71%) belonged to A2 subgroup. 672 (7.04%) belonged to A1B subgroup and 72 (0.76%) belonged to A2B subgroup (Chart 1). Among total 9,539 blood donors, 4,054 (42.49%) had A blood group. The prevalence of subgroups within the 4,054 A blood group donors was found to be as follows: 3,986 (98.32%) belonged to A1 subgroup while 68 (1.68%) belonged to A₂ subgroup. Similarly, 744 (7.80%) donors had AB blood group, within which the prevalence of subgroups was found to be as follows: 672 (90.32%) belonged to A₁B subgroup while 72 (9.68%) belonged to A₂B subgroup (Table 1). No other subgroups of A could be detected in the present study due to the small number of donors phenotyped for subgroups of A. Clinically significant anti-A₁ antibody was not detected in any of the A₂ or A₂B blood group donors.

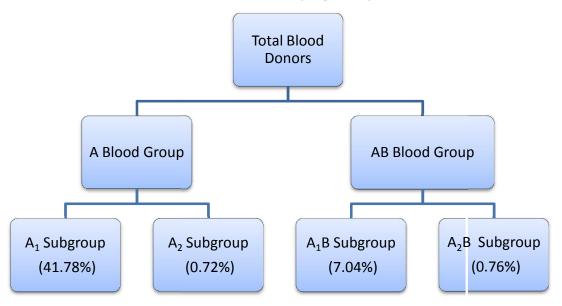


Table 1. Serological reactions of A antigen blood groups

BLOOD GROUP	Anti-A	Anti-A1	Anti-B	FREQUENCY	TOTAL
A ₁	+	+	-	3,986 (98.32%)	4,054
A_2	+	-	-	68 (1.68%)	(42.49%)
A_1B	+	+	+	672 (90.32%)	744
A_2B	+	-	+	72 (9.68%)	(7.80%)

DISCUSSION

Karl Landsteiner discovered the ABO blood group system at the beginning of the 20th century and it is the most important system for clinical transfusion medicine. Epistatic addition of terminal monosaccharide immunodominant sugar to the precursor oligosaccharide H chain leads to expression of ABH antigens. Based on the red cell agglutinability and various serological reactions the blood group A can be sub-classified as A₁, A₂ and weak A sub-groups. A₁ and A₂ phenotypes account for 99% of all group A individuals. A1 cells carry 8.1 to 11.7 x 105 antigenic sites as compared to 2.4 to 2.9 x 105 sites on A₂ RBCs thus A₁ and A₂ differ from each other both qualitatively and quantitatively (Harmening, 1999). N-acetyl galactosamine-transferase in A2 cells less efficient at branched points than in A1 cells due to molecular differences between the A1 and A2 alleles. Similar, serum glycosyltransferases show varying activity with weak positivity in A₃ and A_x to negativity in Aend and Ael. Thus varying antigenic density accounts for different strengths of agglutination reaction with monoclonal anti-A typing reagents (Thakral et al., 2005).

In the studies conducted by S Shastry et al. (2010) in Karnataka the prevalence of A2 and A2B was found to be 1.85% and 10.50% respectively. I.S.C. Kumar et al. (2012) from Andhra Pradesh found 4.1% A2 and 19.2% A2B subgroup prevalence in the study conducted by them. In Hiroshima the proportion of A_2 among A types was found to be 0.17%, whereas the proportion of A₂B among AB types is 1.14%; for Nagasaki, the proportions are 0.08% and 2.44%, respectively (1998). These findings of our study are similar to the above said studies. In our study we found that 98.32% donors of A blood group belonged to A1 subgroup while 1.68% donors belonged to A2 subgroup and 90.32% donors of AB blood group belonged to A₁B subgroup, while 9.68% donors belonged to A₂B subgroup. However in studies conducted by Sharma et al. (2013) from the Greater Gwalior region of India and Hassan (2010) among the Sudanese population, the prevalence of A₂B was found to be similar to that observed in our study, but the prevalence of A₂ subgroup was higher in both the studies being 8% and 14.10% respectively. The number of individuals who lack A₁ antigen is more among the AB group individuals in contrast to A group individuals. This may be due to presence of a strong B gene which suppresses A₁ antigen activity (Voak et al., 1970), the recessive nature of A2gene compared to A1 gene or requirement of a single A₂ gene and a B gene to develop as A₂B blood group phenotypically and two A₂ genes or one A₂ gene and one O gene to develop as A_2 blood group.

Ogasawara *et al.* (1998) studied the genetic basis of "excess" of A_2B subgroup as compared to A_2 . Polymerase chain reaction single-strand conformation polymorphism (SSCP) and nucleotide sequence analyses were used to identify alleles. A putative recombinant allele, R101, was common in those with the A_2B phenotype but uncommon in individual with the A_2 phenotype. They concluded that R101 is presumably expressed as phenotype A_1 in R101/O heterozygous individuals, but as phenotype A_2 in R101/B heterozygotes, thus giving rise to a high frequency of A_2B phenotype (Yamamoto, 2000). For correct determination of ABO blood group status ABO genotyping is a valuable complement to serology. Mutations in

the ABO alleles confer differences in the specificity and activity of transferases that add low levels of A (or B) immunodominant sugars to the precursor H antigen (Denomme *et al.*, 2000). The most common A_x allele has the A_1 consensus sequence with a missense mutation encoding a Phe216Ile substitution (Olsson et al., 2001). A_v phenotype arises due to homozygosity for a recessive regulator gene at a locus independent of that for ABO (Weiner et al., 1957). Mutations in exons 6 and 7 (constituting 77% of the ABO gene) have been studied for their allelism in majority of the cases (16). Combinations of PCR and Restriction Fragment Length Polymorphism (RFLP) or PCR with allele-specific primers have mostly been used to define polymorphism. Previously 14 definable alleles were know but Olsson and colleagues (Olsson et al., 2001) conducted a study and identified 15 novel A and B subgroup alleles using allele-specific primers. These included 2 mutations even outside exons 6 and 7. Thus, an individual's ABO genotype can be defined by using molecular genetics without laborious family studies. It is a useful tool for resolution of typing discrepancies and is especially valuable for distinguishing acquired variant phenotypes from inherited ones (Thakral et al., 2005).

A₂ and A₂B individuals may be immunologically stimulated to produce specific anti-A1 antibody that does not cross react with A_2 red cells, but reacts with A_1 red cells since they cannot recognize A₁ antigens as being part of their own red cell make up. Weaker variants like A₂, A₂B and other subgroups of A and AB may become clinically significant when they have anti-A₁antibody reacting at 37°C. This might led to incorrect ABO blood typing were AB group maybe mistyped as B groupand A group as O group. Approximately 0.4% of A2and 25% of A2B individuals have anti- A_1 in the serum (Rudmann, 1995). Individuals with an A₂B phenotype are more likely than A₂ individuals to produce anti-A1 because of the relative reduction of A antigens on A₂B cells (Hosseini-Maaf et al., 2003). SimilarlyA_x individuals almost always have anti-A₁antibody in their serum whereas A3, Aend, and Ael may occasionally have this antibody. This anti- A_1 is an antibody to type 3A and 4A branched determinants which these individuals lack. Anti-A1 antibody usually are of no clinical significance since they agglutinate cells only up to 25°C. However, anti-A1 can occasionally react at 37°C causing extensive destruction of A1 cells (Boorman et al., 1946; Chaudhary and Sonkar, 2010).

Conclusion

Identification and recording of subgroups is important. Weak subgroups of A antigen red cells may be mistyped as group O or B. Weaker A subgroup unit which has been wrongly grouped as O, when transfused to O group individuals, the donor RBC's can show decreased survival due to the naturally occurring anti-A and anti-B antibodies present in the serum of O group individuals. Similarly AB blood group with a weaker subgroup of A may be mistyped as B. Transfusion of this mistyped AB blood to B group individual would led to a transfusion reaction due to the naturally occurring anti-A present in B group individuals. A_x individuals almost always have anti-A₁ antibodies in their serum which can be clinically significant in some cases. If their whole blood or plasma is transfused to group A individuals they can lead to fatal

transfusion reactions. Hence, testing for anti- A_1 in all individuals with A subgroups should be done before transfusion, even though the presence of clinically significant anti- A_1 is rare. Thus, all A and AB blood groups should be properly evaluated for their subgroups and correct documentation of the same should be done.

Acknowledgment

We would like to thank the MGM Kamothe blood bank staff for their corporation while collecting the donor data from the records.

REFERENCES

Blood Group A Suptypes, "The Owen Foundation," 2008.

- Boorman KE, Dodd BE, Loutit JF, *et al.* Some results of transfusion of blood to recipients with "cold agglutinin". *Br Med J.*, 1946;751-4.
- Brecher ME. Technical Manual. 14th ed, American Association of Blood Banks; 2002.
- Cartron JP, Gerbal A, Hughes–Jones NC, *et al.* 'Weak A' phenotypes: relationship between red cell agglutinability and antigen site density. *Immunology*, 1974; 27: 723-7.
- Chaudhary R, Sonkar A. High titer immunizing anti-A1 in an A2B patient resulting in haemolytic transfusion reaction. Transfusion Bulletin. Available at: http://www.indmedica. com/journals.php?journalid= 2&issueid=2 & articleid= 22&action=article. Accessed on 03-03-2010.
- Denomme GA, Rios M, Reid ME. *Molecular Protocols in Transfusion Medicine*, London, United Kingdom: Academic Press Publications; 2000:67-74.
- Harmening DM. The ABO blood group system. In: Modern Blood Banking and Transfusion Practices, 4th ed. Philadelphia: FA Davis Company Publications, 1999; 302-401.
- Hassan F. M. Frequency of ABO, Subgroup ABO and Rh(D) Blood groups in major Sudanese Ethnic Groups. *Pak J Med Res.*, 2010; 49:21-24.

- Hosseini-Maaf B, Hellberg A, Rodrigues MJ, *et al.* ABO exon and intron analysis in individuals with the AweakB phenotype reveals a novel O1v-A2 hybrid allele that causes four missense mutations in the A transferase. *BMC Genet.*, 2003;4:17.
- Kumar I.S.C., A. Yashovardhan, B. Suresh *et al.* The prevalence of A2 and A2B subgroups in blood donors at a tertiary care teaching hospital blood bank of Rayalassema region: a pilot study. *Journal of Clinical and Scientific Research*, 2012; 01: 50-50
- Landsteiner K, Levine P. On the inheritance and racial distribution of agglutinable properties of human blood. J Immunol., 1930;18:87-94.
- Ogasawara K, Yabe R, Uchikawa M, *et al.* Different alleles cause an imbalance in A2 and A2B phenotypes of the ABO blood group. *Vox Sang.*, 1998; 74: 242-7.
- Olsson ML, Irshaid NM, Hosseini-Maaf B, *et al.* Genomic analysis of clinical samples with serologic ABO blood grouping discrepancies: Identification of 15 novel A and B subgroup alleles. *Blood*, 2001;98:1585-93.
- Rudmann SV. Textbook of Blood Banking and Transfusion Medicine. 1st ed. Philadelphia, WB Saunders 1995:73-5.
- Sharma D.C., S. Rai, S. Iyengeret all. Prevalence and distribution of ABO and Rh-D antigeens along with its subgroups & rare types in Greater Gwalior region. Open J of Blood Diseases, 2013;3:69-73.
- Shastry S, Bhat S. Imbalance in A2 and A2B phe- notype frequency of ABO group in South India. *Blood Transfus.*, 2010;8:267-70.
- Thakral B, Saluja K, Bajpai M, Sharma RR, Marwaha N. Importance of weak ABO subgroups. *Lab Med.*, 2005; 36:32-4.
- Voak D, Lodge TW, Reed JV. A possible explana- tion for the expression of A2B phenotypes observed in some populations. *Vox Sang.*, 1970;18:471-4.
- Weiner W, Lewis HBM, Moores P, *et al.* A gene, y, modifying the blood group antigen A. *Vox Sang.*, 1957;2:25-37.
- Yamamoto F. Molecular genetics of ABO. Vox Sang., 2000;78(suppl 2):91-103.
