
 

       
 

 
                                                 
 

THE M/M/1/N INTERDEPENDENT QUEUING MODEL WITH CONTROLLABLE ARRIVAL RATES 

1,*

1Cauvery College for Women,
2St. Joseph’s College (Autonomous), Tiruchirappalli

 
 

ARTICLE INFO                                          ABSTRACT
 

 

In this Paper, an M/M/1/N interdependent queueing
balking is considered. This model is much useful in analysing the particular situations arising at the 
places like a data voice transmission, computer communication system etc. The steady state solution 
and the system characteristics are derived for this model. The analytical results are numerically 
illustrated and the effects of the nodal parameters on the system characteristics are studied.

 
 
 
 
 

 
 

Copyright © 2016 Sasikala and Thiagarajan. This is an open access article distributed under the Creative Commons Att
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 
 
 

 
INTRODUCTION 
 

In real practice, it is often likely that an arrival become discouraged when queue is long and may not wish to enter the queu
type of arrival is called balking. The notion of customer balking appears in queuing theory in the works of 
analysed M/M/1 queue with balking in which queue length is infinite. 
queueing system with reverse balking (a queueing system that indicates the probability of balking will be low when the queue size 
is more).  Along with several other assumptions, it is customary to consider that the arrival and service processes are indepe
However in many particular situations, it is necessary to consider that the arrival and services processes are inter dependen
A queueing model in which arrivals and services are correlated is known as interdependent queuing Model.
reported in the literature regarding interdependent standard queuing model with controllable arrival rates.
and Srinivasa Rao (2000) have discussed M/M/1/
Thiagarajan (Srinivasan and Thiagarajan, 2006; Srinivasan and Thiagarajan, 2007
queuing model with controllable arrival rates, M/M/C/K/N in
reneging and spares.  In this paper, an M/M/1/N interdependent queueing model with controllable arrival rates is considered w
the assumption that the arrival and service processes of th

arrival rate is considered as,  0 -a faster rate of arrival and 

prescribed number R, the arrival rate reduces from 
greater than some other prescribed integer r (r 
same process is repeated. In section 2, the description of the model is given stating the relevant postulates. In section 3, 
state equations are obtained. In section 4, the characteristics of the model are derived In section
numerically illustrated. 
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In this Paper, an M/M/1/N interdependent queueing model with controllable arrival rates and reverse 
balking is considered. This model is much useful in analysing the particular situations arising at the 
places like a data voice transmission, computer communication system etc. The steady state solution 

d the system characteristics are derived for this model. The analytical results are numerically 
illustrated and the effects of the nodal parameters on the system characteristics are studied.
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rrival rate reduces from o to 1 and it continues with that rate as long as the content in the queue is 
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illustrated and the effects of the nodal parameters on the system characteristics are studied. 

is an open access article distributed under the Creative Commons Attribution License, which permits 

 

In real practice, it is often likely that an arrival become discouraged when queue is long and may not wish to enter the queue. This 
type of arrival is called balking. The notion of customer balking appears in queuing theory in the works of Haight (1957). He has 

Jain and Rakesh Kumar (2014) have studied M/M/1/N 
(a queueing system that indicates the probability of balking will be low when the queue size 
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DESCRIPTION OF THE MODEL 
 
a. Consider a single server finite capacity queuing system in which the customers arrive according to the Poisson flow of rates 

10  and   and the service times are exponentially distributed with rate µ. It is assumed that the arrival process (X1(t)) and the 

service process (X2(t))  of the system are correlated and follows a bivariate Poisson process having the joint probability mass 
function of the form 
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where  
21

, xx  = 0,1, 2,.................,0<  ,i ;    0),,(min0 i  i ,1 

with parameters  ,, 10  and  as mean faster arrival rate, mean slower arrival rate, mean service rate and mean dependence 

rate (covariance between the arrival and service process) respectively. 
 
b. The capacity of the system is finite (N)  
c. The queue discipline is First –come, First –serve. 

d. When the system is empty a customer may balk with probability 
q  and may enter with probability p (=1 -

q ). 

e. When there is at least one customer in the system, the customers balk with a probability 









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1
1

N

n and join the system with 

probability
1N

n
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The postulates of the model are 
 

(i) The probability that there is no arrival with Reverse balking and no service completion during a small interval of time h, 

when the system is in faster rate of arrivals is   )()(')(1 0 hohp    

(ii) The probability that there is one arrival with Reverse balking and no service completion during a small interval of time h, 

when the system is in faster rate of arrivals is )()( 0 hohp   

(iii) The Probability that there is no arrival with Reverse balking and no service completion during a small interval of time h at  

state n, when the system is in faster rate of arrival is    )()(
1

1 '
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(iv) The Probability that there is no arrival with Reverse balking and no service completion during a small interval of time h at  

state n, when the system is in slower rate of arrival is    )()(
1

1 '
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(v) The probability that there is no arrival with reverse balking and one service completion during a small interval of time h state 

n, when the system is either in faster or slower rate of arrivals is  )()( hoh   

(vi) The  Probability that there is one arrival with Reverse balking and one service completion during a small interval of time h, 
when the system is either in faster or slower rate of arrivals is )(hoh   

 
THE STEADY  STATE EQUATIONS 
 

Let )0(Pn  be the steady state probability that there are n customers in the system when the arrival rate  is 0
 
and )1(nP  be the 

steady state  probability that there are n customers in the system when the arrival rate is 1 . We observe that )0(Pn  exists when  

n = 0,1,2,.....r -1,r both )0(Pn & )1(nP exist when n = r+1, r+2, ......R-1 and )1(nP   exists when n=R, R+1,....N. Further )0(Pn =

)1(nP = 0if n>N. With this dependence structure, the steady  state equations  are  

 

)0()()0()(0 100 PPp    ………………………………..(3.1) 
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The probability )0(0P that the system is empty can be calculated from the normalizing condition  1)1()0(  PP  
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                     ………………..(3.14) 
 
CHARACTERSTICS OF THE MODEL 
 
The probability )0(P that the system is in faster rate of arrival is 
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The Probability that the system is in slower rate of arrival is 
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The expected number of customers in the system is give by 
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From (3.12) and (3.13),we get 
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Using Little’s formula, the expected waiting time of the customers in the system is given by 


s

s

L
W              Where )(P)(P 10 10          …………………………...(4.9) 

 
Numerical illustrations 
 

For various values of NpqRr ,,,,,,,, 10
 the values of SS0  Wand L P(1) P(0), (0),P

    
are computed and 

tabulated in the following Table. 
 

 
S.No r R N 0 1   q  p  P0(0) P(0) P(1) LS WS 

1 2 5 8 4 3 5 0 0 1 0.5193 0.9944 0.0056 0.5776 0.1446 
2 2 5 8 4 4 5 0 0 1 0.5190 0.9938 0.0062 0.5804 0.1451 
3 2 5 8 4 3 5 0.5 0 1 0.5281 0.9958 0.0042 0.4743 0.1187 
4 2 5 8 4 3 5 1 0 1 0.6015 0.9999 0.0001 0.4441 0.1180 
5 2 5 8 4 3 4 0 0 1 0.4524 0.9859 0.0141 0.7171 0.1799 
6 2 5 8 4 3 4 0.5 0 1 0.4527 0.9865 0.0135 0.7046 0.1618 
7 2 5 8 4 3 3 0 0 1 0.3522 0.9474 0.0526 1.0513 0.2664 
8 2 5 8 4 3 3 0.5 0.8 0.2 0.7257 0.9933 0.0067 0.4224 0.1058 
9 2 5 8 4 3 3 0 1 0 1.0000 1.0000 0.0000 0.0000 0.0000 

10 2 5 8 4 3 3 0 0.5 0.5 0.5210 0.9613 0.0387 0.7774 0.1962 
11 2 5 8 4 3 3 0 0.2 0.8 0.4047 0.9519 0.0481 0.9663 0.2445 

 
Conclusion 
 
The observations made from the Table 1 are   
 
1.  When the mean dependence rate increases and the other parameters are kept constant,   LS and WS decrease 
2.  When the arrival rate increases and the other parameters are kept constant, Ls and Ws increase.  
3.  When the service rate increases and the other parameters are kept constant, Ls and Ws decrease. It is also observed that the 

expected system size is zero when q is 1.  

4. When the balking rate decreases and other parameters are kept constant, Ls increases regularly and attains maximum when  

q  is zero. 
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