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ARTICLE INFO                                      ABSTRACT 
 

 

This paper deals with the asymptotic analysis of Rotation Bio convection (RBC) in a 
suspension of phototactic algae.  Bioconvection is an interesting pattern-forming 
phenomenon driven by the swimming activity of various aquatic micro organisms.  In 
fact, bioconvection is a robust phenomenon and is one of the oldest documented 
collective behavior of independent microorganisms.  Further, positive phototaxis 
consists of motions directed toward the source of illumination and negative phototaxis 
is, the motion directed away from it.  The asymptotic analysis was carried up to the 
fourth order approximation and the cumulative effect of Taylor number and the other 
governing parameters on the stability conditions as well as on the different profiles was 
remarkable.  The computed results were presented through graphs and are in excellent 
agreement with the available results in the limiting case. 
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INTRODUCTION 
 

Bio-convention is an intriguing pattern forming phenomenon 
driven by swimming activity of various aquatic micro-
organisms. The term Bio-convention was recently developed 
in fluid mechanics and refers to flows induced by the 
collective motion of a large number of motile micro-
organisms (platt, 1961, Pedley and Kessler 1992). This 
phenomenon can lead to pattern formation in aquous media 
when the motile micro organisms respond to certain stimuli 
(e.g. Gravity , Light, Nutrients etc.).This tactic nature of the 
microorganisms leads to different types of bio-convection 
(B.C).  In general,  Bio-convection  has a positive effect on the 
entire microbial population by carrying oxygen into deep 
layers of non-aerated suspensions.  Further positive phototaxis 
consists of motions directed towards the source of illumination 
and negative photo taxis is, the motion directed away from it. 
The basic mechanism underlying this phenomenon is similar 
to that of the well known R.B.Convention in the sense that 
both are due to the Buoyancy force resulting from a density 
gradient,  which in the case of BC, occurs when a large 
number of micro organisms (that are slightly denser than 
water)  accumulates in a certain region of the fluid medium, 
while in the case of R.B.Convection, the density gradient is 
due to the adverse temperature gradient. Applications of bio 
convection to enhance mixing of small solid particles may 
include micro fluidic applications relevant to bio-technology 
and medicine, such as the analysis of blood samples when 
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only limited volumes of blood can be extracted. These are 
other interesting applications. A detailed review of the 
literature is available in Padmasani (2003)  Anuradha (2006) 
and Hill and Pedley (2005). In the present model the 
constraining effect of rotation along with the effect of shading 
whereby micro organisms nearer the light source absorb and 
scatter the light before it reaches those farther away.  The 
present model constitutes five dimensionless parameters 
together with a parameter that specifies the vertical position of 
the sub layer in the fluid.  Our model considers two cases (i)  
Rigid upper surfaces (ii)  Stress free upper surface.  The 
asymptotic analysis was carried up to the fourth order 
approximation.  The cumulative effect of Taylor number and 
the other governing parameters on the stability conditions as 
well as on the different profiles is remarkable.  The position of 
the sub layer actually depends on the intensity of the light 
source and the solution are obtained through the solvability 
conditions.  The computed results are presented through graph 
and are in excellent agreement with the available results in the 
limiting cases. 
 

MATERIALS AND METHODS 
 

In this section the continuum model in boundary conditions 
and asymptotic analysis are discussed. 
 
 

THE CONTINUUM MODEL: 
 

In this study it is assumed that the length scale of the bulk 
motions and the concentration distribution are large compared 
to typical cell diameters and cell spacing. 
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The algal cells themselves are modeled as internally 
homogeneous,  pigmented particles of volume ѵ and density 

( ,        where  p is the density of the fluid)  and 

posses  the same light transmittance in all orientations.  The 
number of cells in a small volume  δ ѵ defined  relative to 
Cartesian  axis  O  x* y* z*  in n*(x*,t*)  δ ѵ   Where z*  is 
the axis in the vertical  direction and t*  is time.  Neglecting  
all inertia in the cells motion and supposing the suspension is 
dilute (n* ѵ << 1 )  and incompressible then, if u*(x*,t*)  is 
average velocity of all the material in δ ѵ, 
 

 * *
0 ... 1U �      

                                             
 

For simplicity, we shall assume that the effect of the cells, on 
the suspension is dominated by the stokelets due to their 
negative buoyancy  and that all other contributions to the bulk 
stress are sufficiently small to be neglected. Neglecting all the 
forces on the fluid except the cells negative buoyancy, 

n*νg  δѵ where g is the acceleration due to gravity,   the 

momentum equation under the boussinesq  approximation is  
 

  
* * * * *2 *

2 * ... 2
*

Du
k u P n vgk ue

Dt
        
 
  


 

    

      
 

The entire system is rotating about the vertical axis with an 

angular velocity  


=(0,0,  ). Here, *,
* *

D
u

Dt t


 


  
*  is 

the material time derivative. k  is a unit vector in the z*  

direction, eP is the excess pressure above hydrostatic and   

is the dynamic  viscosity of the suspension which, since the 
suspension is dilute, is considered to be that of the fluid,  
which is effectively water,  The equation for cell conservation 
is  

*
* *

,
*

n
J

t


 


                                                                    ..(3) 

where  J*  (x*, t*)  s  is the net flux across a surface 

element,   s,  at x*, j*  can be written as 

J*=n*u*+n*
* * *

e p D n  �                                           ... (4) 

where p  is given by  �  ( )V V p V p f p d pc A A    

The first term, n*.  u*,  is the flux due to advection of cells by 
the bulk flow.  The other terms represent fluxes arising from 

the stochastic nature of the cell swimming:  n* cv p  is a 

mean flux due to cell swimming and –D*,
*

 n*  is a diffusive 
flux of cells down cell concentration gradients. We shall 
consider a fluid layer with horizontal  boundaries  at z* = -H, 
O  and shall assume that the vertical boundaries are far enough 
away  that the layer has an effectively infinite width.  The 
suspension is illuminated by parallel light from a uniform  

source of intensity sI   Vertically above the layer. 
 

* * 1 * 1
( ( , ) )0*

o
P I n x t dz CHN kc z

    
  

                 ..(5) 

 

The continuum  model is now complete. 
 

THE BASIC STATE 
 

This study presents the results for both free and rigid  upper 
horizontal  boundaries. The basic state solution is found to be;  

*2
1* * 2 * *

( ) ( )
* 22

k Dvn z Sech k z CH
V IcA 

 


 
 
 

                   ..(6) 

where k* is a constant of integration  which can be related  to 

0N  the number of cells per unit  volume for the whole layer, 

by  the relation 
0 * 1 1

( ) 0n x dz N Hn                             ..(7) 

It is apparent from (6)  that the region above z* = -CH  is 
locally  gravitationally stable  and convective  motions 
occurring in the  unstable region  below  z*=  -CH  will 
penetrate  the upper layer. 
 
Non-Dimensionalization 
 
The governing equations are made dimensionless  using the 
following scales:  Length  Scale: H(H is depth of the layer), 

Bulk fluid velocity: D v /H; Time:
2

/ ;H Dv , Cell 

Concentration : 0N  , No is the uniform  cell concentration , 

Diffusion:D v ,Pressure: 
2/vvD H  v  is the kinematic  

viscosity  and vD   is the diffusion parameter.

 
2

2

0,

1
( ) ( )

2 2

K
K

U

n z Sech z c
d



 
  

 

          }… (8) 

where the horizontal  boundaries are at z = -1, 0 

and  *A
HV P

P I N Hc o
Dv

d where              … (9) 

K=k∙H  and is determined by (7)  which produces 
the transcendental equation 

1 1
tanh( ) tanh( ( 1))

2 2
K kc k c d  
 
 
 

            …(10) 

After  non dimensionalizing,  the system of equations becomes 

U O �                                                     

   1.
n n

nU d n x dz c
t z

 
       

1( )dn n x dz c
z


    

2
2

2h

n
K n

z


  


                                                                   ..(11) 

 
2

21
( . )

U H
Sc U U kxU

t v


   



   
    

 =- 2
Pc nk U   )….(12) 

 

Linear Stability  analysis 
 

In this section,  the linear stability  problem  is  discussed by 
considering a small perturbation to the equilibrium  state (8)  
of amplitude   ,    Where  0 <   1   In this case. 

1U U
, 0 1( , )n n n x t 

, c o eP P P    

where  
2

2
0

1
( )

2 2

K
Kn Sech z c

d

 
  

 
                    ...(13) 

If  1 1 1 1( , , )u u v w and we define  H vD D  Where K is a 

positive real number then, substituting the above perturbation  
quantities into  (1)  (2)  and  (3)  and linearizing about the 
basic  state  by  collecting the 0()  terms,  gives. 

01U                                         ...(14) 
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  
2

1 21
1 1 1

2
( , )

U H
Sc kXU pe n x t k U

t v
       


               ...(15) 

2
0 0 20 01 1 1( , , , ) ( ( ) ) 21 0 0 1 1 12

dn dnn dn n
d n x y s t ds n s ds c n n n wz z n

t dz dz dzz


 
         

 

 
 
 

    ...(16) 

where 
3

0

v

N V gH

D




 


     where  

v
Sc

Dv
   is the 

schimid number,  

2 2
2

2 2
,h ep

x y

 
  

 
 and the horizontal  

Component  of u is have eliminated from the above equations 
by taking the curl  of  (15)  twice and retaining the z-
component of the result.  This reduces the system to two  
equations in w1  and 

n1
2

2 2
1 2 2 1 2 21

1 12

w
Sc w Sc nht tz


  

     
 

   
        

 (17) 

0 001 1
1 0 0 1

2
2 01

1 12

( , , , ) ( ( ) ) 2z z

n

dnn dn
d n x y s t ds n s ds c n n

t dz dz

dnn
k n w

z dz

  
        


    



        …(18) 

where 
22H

v


 

          
(  is Taylor number)           …(19) 

The equations in 1w   and 1n  can then be resolved into normal  

modes  by  substitutions 
 

1 1( ) ( , )exp( ), ( ) ( , )exp( )n z f x y t w w z f x y t                ...(20) 

 

Where the horizontal  platform satisfies  
2 2 ,h f k f k     

being a dimensionless horizontal  wave number and   is the 
growth  rate.   Using (33) the governing equations  after the 
elimination of pressure and vertically becomes 
 

22 2 2
1 2 2 2

2 2 2

2
2 1 2 2

2

d d d w
Sc k k w

dz dz dz

d
k Sc k k

dz



   





   
       

   

 
   

 

            ...(21) 

 

 

 

2
0

00 0
2

0
0 2

2

( )
( )

z

z

dn k
dn dn

d s ds wd ddz dzd n s ds c
dz dz

 

 

   
 

   
   

 

       ….(22) 

Subject to boundary conditions 
 

  0
0 0{ ( ) ( ) 0o

z z

d
d n s ds c n s ds

dz


          at  z=-1,0                 

                                              ...(23) 
and for rigid boundaries 

   

3

3
0

dw d w
w

dz dz
   at   z = -1,0                ..(24) 

At a stress free surface the  last condition Is replaced by 
2 4

2 4
0

d w d w
w

dz dz
     at  z = -1,0              ...(25) 

 
The new  aspect  of this model,  the effects of photo-tactic 
motions, are incorporated in the  terms  found on the left hand  
side of the cell  flux  Equation.   

  0 00
0 0,z z

dn d
ds n and n s ds c

dz dz


 

 
   

 
  

Equation (22)  is a linear integro differential equation with non 
constant co-efficient,  solution of which represents a problem 
of  considerable  difficulty.  Certainly it may be reduced to 
ODE  by the use of the substitution. 

* 0( ) ( )zz s ds                     ...(26) 

In which  case  
*1( )z  - ( )z  

 

Asymtotic  Solutions 
 

In this section  we shall present  an asymptotic  solution to the 
normal  mode problem   for rigid and stress free  upper 
surfaces when  0 < d << 1.  In the case  when   d << 1, (24) 

can be solved approximately to give  
1/2(2 )k d   so that 

n(z) is given by (21). Motivated  by the studies  of CLS  and 
HPK,  we anticipate that for this  shallow  layer  case the most 
unstable  wavelength is zero  when  C=0. Thus  we consider  

small wave numbers such that k d� and we get, 
 

  
22 2 2 *

2 2 21 2 2 2

2 2 2

d d w d
Sc k d k d w Rk d

dz dz z dz


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
2

21 2
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                                                ...(27) 
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d
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
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2 * 3 *
0

2 3

d d dn
w
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 
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                                                                            ...(28) 

 

3
0

v

N V gH d
R d

D




 


                                  ...(29) 

 

here   / 1k k d so k � . On expanding the hyperbolic  

functions as power series in d we get 
2 3

0 1 21 ( ) ( ) 0( )n ds z d s z d     

0dn

dz
= 

2 31 2 0( )
ds ds

d d d
dz dz
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0 1 1
( )0

0 1 1 2 0 1 1 3
( ) ( ) ( ) 0( )1 2

n z dz Cz

z c d s z dz d s z dz dz z

  
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where  

1
2

1

1
( ) ( 2 )

2 3

z
s z z zc c    

 

4 3 2 2 3 2 2 3 2 2
2

1 2
( ) ( 4 3 2 3 6 2 2 )

6 15
s z z zc zc zc zc zc c z zc c c             

 
HPK  observed that to get nontrivial solution which satisfy the 
even leading order boundary  conditions, requires  that highest 
derivations in (45)  and (46)  are retained and the leading order 
balance  in (45)  must give. 

407                    International Journal of Current Research, Vol. 3, Issue, 11,  pp.405-412, October, 2011 
 



2 2 21
2 2

d d w d
s d k Rc

dzdz dz


 

 
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 

       .                        …(30) 

 (30)  represents the balance between the viscous terms on the 
left hand side and the buoyancy  terms on the right hand  side 
which drive  without loss of generality,  we specify  that 

*
0(1)                                                 …(31) 

To be consistent with (47)  and (50)  we  consider the case 
* 1, , 1, 1w d R � � � � and expand the following  

quantities as power series in d: 

* *

0 1 0 0

, , ,n n n n
n n n n

n n n n

d w d w R d R d   
   

   

         

 
Case (i)  :   Rigid upper surface 
 
Leading order problem 

6 4 2 2 1
1 2 2 21 1 1

0 06 4 2 2
2

d w d w d w d w
Sc Sc

dz dz dz dz
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 
* 3 *

2 21 0 0
0 0 0 3

d d
k Sc R k R

dz dz

 
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3 *

0
3

d

dz


0

*
0d

dz


=0                                                ...(33) 

subject  to the boundary  conditions 
 

2 * 3
0 1 1

12 3
0

d dw d w
w

dz dz dz


        at  z = -1,0.                ...(34) 

*
0 0       at  z=0                                             …(35) 

Integrating (50) w.r.t z and applying Boundary conditions we 
get 

       0 0       Or   
*
0 ( 1) 0    

We now have the following two cases: 

When  
*
0 ( 1) 0     0 0       

    0
*

( )00 z Sinn z                   

*
0 ( )0 0 z hastrivial solution    

when  0 0  then  

 

2 *
0

2

(2)d

dz


=0   => 

*
0 ( )z   =  -z                                     …(36) 

Suppose  0 0 
    

 

6
1

6

d w

dz

2
2 1

2

d w

dz
 =  
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2

0
0 3

d
k R
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Solving the above equation and applying the boundary 
conditions we get  
 


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2 8 4 3 2
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2 21 9 1 5

2 2.7! 12 4.7!
        

Which is precisely the same as leading order solution as that 

obtained by HPK where  
*
0  has been scaled so that 

*
0  = +1 

without loss of generality. Proceeding in the same manner, we 
compute the highest order solutions which are listed below 
(the details are avoided); 
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CASE(ii): STRESS FREE SURFACE 
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RESULTS AND DISCUSSIONS 
                                                   
The results of the present investigation are presented in figures 
1 to 18. The results are computed for different sets of the 
governing parameters (k,d,c,t) for rigid upper and stress free 
upper surfaces. The results for small as well as large rotation 
rates are presented through graphs. The following important 
observations were made from the figures: In figures 1 to 6, the 
velocity profiles are drawn for different combinations of the 
governing parameters. W(z) is negative throughout the region 
only when d=20 and c=0.8 as in the non-rotating case where 
c=0.2. For d < 20 ,the profile is parabolic with maximum a 
value at the middle of the layer. The parabolic nature strongly 
depends on the values of d and C in the rotating bioconvective 
case. The effect of increasing c is to decrease w (z) for a 
particular wavenumber k. For small as well as large values of 
d ,w=o as     k  0, irrespective of the values of t and c, which 
is as expected (figures 5 and 6).For all non-vanishing values of 
k, w increases continuously with k for a particular value of c 
both in the shallow as well as deep layers.                                                                                
Further, for large rotation rate (t=10^3), the vertical velocity 
W is very high in the case of a shallow layer when compared 
to a deep layer (figures 5a and 5b).It is interesting to 
note(figures 5c and 6a)  that the effect of rotation in BPC is 
quite remarkable, for w decreases with the increase in c for 
t=1000 but , for t=10, w increases with c for a particular k.                                                             
(Ii)  In figures 7 and 8, the variation of total R with respect to 
c is presented for t=100, d=10; t=10 and d=0.1 respectively. 
The interesting feature is that for d=10 and t=100, as c is 
increased R(k) vs. c curve exhibits oscillations. In other 
words, the branching is mode 2 and not mode 1, in which case, 
a single convection cell that extends throughout the whole 
layer is supplemented by a second smaller convection cell 
which forms at the bottom of the layer  and grows in the 
height for c ≤ 0.75.For values of c< 0.7, it is mode 1. Thus 
mode 2 solutions were observed in this analytical investigation 
for certain restricted parametric ranges.  
 
From figures 9 and 10, it is observed that as d is increased for 
t=1000,the value of R increases. Further, it is found that the 
value of c for which the suspension is most unstable increases 
as d increases for a certain ranges of the Taylor number. This 
type of behavior is observed in the case of penetrative 
convection see for example, veroniss (1963),Whitehead and 
Chen(1970), Rudraiah and srimani (1980), Srimani (1981), 
Srimani and Sudhakar (1992) and Mathews(1988). Veronis 
(1963) and Srimani and Sudhakar (1994) have reported that 
the introduction of a locally gravitationally stable region of 
fluid or a porous layer under the rotational constraint above an 

unstable region decreased the critical Rayleigh number and 
suggested that the addition of a stable fluid at the top of the 
layer was  offset by the relaxation of the upper no-slip 
boundary conditions and thus allowing greater penetration into 
the stable region, so that the fluid motion could achieve an 
optimum level. In the present investigation, as the values of c 
and t are increased in a suitable fashion, the relaxation of the 
no-slip boundary conditions and the introduction of the 
rotational constraint which reduces the viscous dissipation, are 
offset by the addition of stable fluid at the top of the layer. 
Where the buoyancy tends inhibit the convective fluid motions 
thereby increasing R again. 
 
Figures 9 and 10 predict the linear behavior of R in shallow as 
well as deep layers for t=1000 and different values of c. In 
figures 11 and 14, the profiles of perturbations to the shading 
Q (z) for deep and shallow layers are presented for different 
values of c and t. The following observations are made: For 
large rotation rates, the profiles exhibit the same behavior for 
shallow as well as deep layers. The values were almost 
identical and decreases with c. For values of c ≤ 0.7, Q 
decreases enormously with k and vanishes for k=1. But for 
small rotation rates, for example, t=10, the behavior is exactly 
the opposite. In this case Q (z) increases with c and k and the 
shading never becomes zero. This clearly suggests that there is 
a drastic change in the behavior of rotating and non-rotating 
bioconvective systems in the presence of phototaxis. (iv) In 
figures 15 to 18, the vertical velocity profiles for shallow as 
well as deep layers are presented when the upper boundary is a 
stress-free surface. Figures 15 and 16, reveal that there is a 
drastic difference in the behavior of w for small and large 
rotation rates when d=0.1.In the case of deep layer, large 
rotation rate (t > 10^2) has no additional effect on w.   Finally 
it is concluded that there is a remarkable difference in the 
behavior of a bioconvective system (with phototaxis) with 
regard to (a) rotating and non-rotating system and (b) shallow 
and deep layers. Since the effect of rotation is quite significant 
it is possible to suppress or enhance bioconvection by a 
suitable choice of the governing parameters. Further, it is 
emphasized that the result of the present investigation are in 
excellent agreement with those of non-rotating system                      
(Vincent & Hill, 1996) for t=o for all the cases. 
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