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intestinal tract, transport of food bolus through the esophagus, tran
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ABSTRACT 

In this paper we investigated the effect of magnetic field on the peristaltic transport of a biofluid in an 
inclined channel by modelling the fluid as a Johnson-Segalman fluid under the assumptions of low 
Reynolds number and long wavelength. The governing equations are solved using the perturbation 
technique. Stream function is determined and the relationship between velocity and the longitu

pressure gradient is obtained. Further it is observed that the magnetic parameter   

number   ��, amplitude ratio � and slip parameter   � have strong effects on the velocity, stream 
function and the pressure gradient. The effects of these parameters on axial velocity, stream function 
and pressure gradient have been graphically studied. The pressure drops over a wave length are 
tabulated for some values of flux and magnetic parameter with small value of Weissenberg number. 
The results obtained for flow characteristics reveal many interesting behaviors that warrant further 
study on the non- Newtonian flow phenomena. 
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The study of peristaltic flow has attracted many researchers in recent years. This is because of the fact that it is an inher
property of many syncytial smooth muscle tubes, stimulation at any point can cause a contractile ring to appear in the circular 
muscle of the gut, and this ring spreads along the tube. Peristaltic pumping is a form of fluid transport is a physiological 
mechanism in the human body that propels the fluids from one place to another. Peristaltic action is an inherent neuromuscular 
property of any tubular smooth muscle structure. The fluid is driven by a periodic progressive wave of contraction and expans
along the length of the distensible tube of uniform or varying cross-section. It is responsible for the transport of biological fluids in 
several physiological processes such as passage of urine from the kidneys to the bladder, the movement of chyme in the gastro
intestinal tract, transport of food bolus through the esophagus, transport of blood in small blood vessels, embryo transport in non
pregnant uterus, and movement of spermatozoa in human reproductive tract. Flawed/improper peristaltic motion in the ejaculato

(ejaculation in which seminal fluid is discharged in the wrong direction, travelling up 
towards the bladder instead of outside the body through the urethra) a cause for infertility in men. Retrograde ejaculation i

antagonists, transurethral prostatectomy (TURP), colon or rectal surgery, multiple 
sclerosis, or spinal cord injury. These flows provide efficient means of sanitary fluid transport and are thus exploited in i
peristaltic pumping and medical devices. For example, mechanical roller pumps are used to pump viscous fluids in the printing 
industry and the peristaltic transport of noxious fluid is performed in the nuclear industry. In addition, modern medical dev
have been designed on the principle of peristaltic pumping to transport fluids without internal moving parts, for example, the blood 
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Kwang Hua Chu (2003) discussed initiability problems related to the basic slip flow induced by peristaltic waves propagating 
along the deformable walls of the micro channels based on the spectral method. Mekheimer and Abd-Elmaboud (2008) discussed 
the influence of an endoscope on the peristaltic flow of a couple stress fluids in an annulus under a zero Reynolds number and long 
wavelength approximations.  The effect of heat transfer on the peristaltic flow of a Newtonian fluid through a porous space in a 
vertical asymmetric channel is analyzed by Mekheimer et al. (2010). The peristaltic flow of Herschel-Bulkley fluid in an inclined 
flexible channel lined with porous material is investigated by Sreenadh   et al. (2011). Krishna Kumari et al. (2011) studied the 
peristaltic pumping of a Jeffrey fluid under the effect of magnetic field in an inclined channel. The effect of slip on peristaltic 
transport of an incompressible Newtonian fluid in a two-dimensional inclined channel with wall effects has been investigated by 
Ramana Kumari and Radhakrishnamacharya (2011). Hina et al. (2012) investigated the peristaltic motion of a Maxwell fluid in an 
asymmetric complaint channel. The peristaltic flow of a Prandtl fluid in an asymmetric channel has been investigated by Akbar                
et al. (2012). 
 
The subject of biomagnetic fluid dynamics has become more and more evident during the past few decades. The 
magnetohydrodynamic (MHD) flow of a fluid in a channel with elastic, rhythmically contracting walls (peristaltic flow) is of 
interest in connection with certain problems of the movement of conductive physiological fluids, (for example, the blood pump 
machines). The examples include the development of magnetic devices for cell separations, targeted transport of drugs using 
magnetic particles as drug carriers, magnetic wound or cancer tumour treatment causing magnetic hyperthermia, reduction of 
bleeding during surgeries etc. The magnerohydrodynamic (MHD) flows of non-Newtonian fluids are of great interest in 
magnetotherepy. The non-invasive radiological test uses a magnetic field (not radiation) to evaluate organs in abdomen prior to 
surgery in the small intestine (but not always).  
 
Ebaid (2008) studied a new numerical solution for the MHD peristaltic flow of a biofluid with variable viscosity in a circular 
cylindrical tube by an Adomian decomposition method. Nadeem and Akbar (2010) have investigated the peristaltic flow of an 
incompressible MHD Newtonian fluid in a vertical annulus. The MHD peristaltic flow of an incompressible viscous fluid in an 
inclined asymmetric channel is investigated by Rami Reddy et al. (2010). Hayat and Noreen (2010) investigated the influence of 
an induced magnetic field on the peristaltic flow of an incompressible fourth grade fluid in a symmetric channel with heat transfer. 
Hemadri Reddy et al. (2011) studied the effect of induced magnetic field on peristaltic pumping of a Carreau fluid in an inclined 
symmetric channel filled with porous material under the long wavelength and low Reynolds number assumptions. The MHD 
peristaltic flow of a Prandtl fluid in a uniform channel under the assumptions of long wavelength and low Reynolds number is 
investigated by Jothi et al. (2012).  Akram et al. (2013) studied Numerical and analytical treatment on peristaltic flow of 
Williamson fluid in the occurrence of induced magnetic field.  
 
Although there are many models to describe non-Newtonian behavior of the fluids but in recent years, the Johnson-Segalman fluid 
has acquired a special status, as it includes the classical Newtonian fluid and Maxwell fluid as special cases. The Johnson-
Segalman model was developed to allow for non-affine deformations. This model has been used by a number of researchers to 
explain the phenomenon “spurt”. “Spurt” is a phenomenon found in the flow of a number of non-Newtonian fluids in which there 
is a large increase in the volume throughout for a small increase in the driving pressure gradient, at a critical pressure gradient. 
Some experiments relevant to this issue have also been carried out by  El Shahed et al. (2005) have investigated the peristaltic 
transport of Johnson-Segalman fluid by means of an infinite train of sinusoidal waves travelling along the walls of a two-
dimensional flexible channel.  
 
The fluid is electrically conducted by a magnetic field. A perturbation solution is obtained for the case in which amplitude ratio is 
small. A mathematical model for MHD flow of a Johnson-Segalman fluid in a channel with complaint walls is analyzed by Hayat 
et al. (2008a). Peristaltic transport of a Johnson-Segalman fluid in an asymmetric channel is studied by Hayat et al. (2008b). The 
flow is engendered due to sinusoidal waves on the channel walls. A series solution is developed for the case in which the 
amplitude ratio is small. Their assumptions show that the mean axial velocity of a Johnson-Segalman fluid is smaller than that of a 
viscous fluid. 
 
The effect of magnetic field on the peristaltic motion of a Johnson-Segalman fluid in an asymmetric channel is investigated by 
Suryanarayana Reddy and Sankar Shekar Raju (2010). Nadeem and Akbar (2010) have analyzed the interaction of peristalsis with 
heat transfer for a Johnson-Segalman fluid in an inclined asymmetric channel under the supposition of long wavelength. Nadeem 
and Akbar (2011) studied the problem of heat and mass transfer on peristaltic flow of a Johnson-Segalman fluid in a vertical 
asymmetric channel under the effect of induced magnetic field. Recently, Hina et al. (2012) investigated the peristaltic flow of an 
incompressible Johnson-Segalman fluid in a curved channel. Effects of the channel wall properties are taken into account in this 
study. Peristaltic Motion of Johnson-Segalman Fluid in a Curved Channel with Slip Conditions was studied by Sadia Hina et al. 
(2014). In view of the above facts, much work was not done on inclined channels.  
 
It is required more attention for investigations on inclined channels. In this paper we investigated the effect of magnetic field on 
the peristaltic transport of a biofluid in an inclined channel by modeling the fluid as a Johnson-Segalman fluid under the 
assumptions of low Reynolds number and long wavelength.  Analytical solutions for the stream function and average velocity and 
pressure gradient have been obtained and the effects of various relevant parameters have been graphically studied.  
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The pressure differences over a wave length are tabulated for various values of flux and magnetic parameter with small value of 
Weissenberg number. 
 
Basic Equations 
 
The basic equations governing the flow of an incompressible fluid are the field equations 
 

  div� =  0,      div� + �� =  �
��

��
                                                                                                                                                      (1) 

 

where � is the velocity, � the body force per unit mass, ρ the density, 
�

��
 the material time derivative, and σ is the Cauchy stress. 

Johnson and Segalman proposed an integral model which can also be written in the rate-type form. With an appropriate choice of 
kernel function and the time constants, the Cauchy stress σ in such a Johnson-Segalman fluid is related to the fluid motion through 
  
� = �� + �                                                                                                                                                                                       (2) 
 
� =  2�� + �                                                                                                                                                                                      (3) 
 

� + � �
��

��
+ �(� ��) + (� ��)��� = 2��                                                                                                                             (4) 

 

where � is the symmetric part of the velocity gradient and � the skew-symmetric part  of the velocity gradient, that is, 
 

� =
�

�
[� + ��],     � =

�

�
[� ��],    � = �����                                                                                                                                (5)       

 

Also, �� denotes the indeterminate part of the stress due to the constraint of incompressibility, � and � are viscosities, m is the 

relaxation time, and � is the slip parameter. When  � = 1, the Johnson-Segalman model reduces to the Oldroyd-B model; when 

� = 1and � = 0, the Johnson-Segalman model reduces to the Maxwell fluid; and when m = 0, the model reduces to the classical 
Navier-Stokes fluid. Note that the bracketed term on the left-hand side of (2.4) is an objective time derivative.   
 
Formulation and Solution of the problem 
 

Consider a two-dimensional inclined channel of uniform width 2� filled with an incompressible Johnson-Segalman fluid. We 

choose a rectangular coordinate system for the channel with �� along the center line and  ��  normal to it. The channel is inclined at 

an angle � with the horizontal.Let �� and ��  be the longitudinal and transversal velocity components of the fluid, respectively. We 

assume that an infinite train of sinusoidal waves progresses with velocity along the walls in the �� direction. (Fig.1)  
The geometry of the wall surface is defined as  
 

  �(��, �) = � + � ��� �
��

�
(��, �)�                                                                                                                                                        (6) 

 

where  � is the amplitude  and � is the wavelength. We also assume that there is no motion of the wall in the longitudinal direction 
(extensible or elastic wall). For unsteady two-dimensional flows, 
 
� = ��[(�� , ��, �), ��(�� , ��, �), 0]                                                                                                                                                           (7) 
 
The equations of motion (1) and the constitutive relations (2), (3) and (4) in the absence of body forces takes the following form:  
 
���

���
+

���

���
= 0                                                                                                                                                                                          (8) 

 
 

� �
�

��
+ U�  

�

���
+ V�

�

���
� U� =

��� (�� ,��,�)

���
+ μ �

��

���� +
��

����� U� +
�������

���
+

���� � ��

���
�B�

�U� +  �� sin �                                                (9)       

 
                                                                                                                                 

� �
�

��
+ �� 

�

���
+ ��

�

���
� �� =

��� (�� ,��,�)

���
+ � �

��

��� � +
��

����� �� +
��̅� �����

���
+

��̅����

���
�� cos �                                                                        (10)                     
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���

���
+

���

���
� = ��̅��� + � �

�

��
+ �� 

�

���
+ ��

�

���
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 �(1 �)
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  (1 + �)
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�(1 �)
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���
  (1 + �)

���

���
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 2 �
���

���
= ��̅��� + � �

�

��
+ �� 

�

���
+ ��

�

���
� ��̅��� 2�� ��̅���

���

���
+ � �(1 �)

���

���
+ (1 + �)

���

���
� ��̅���                                                      (13) 

 

In the fixed coordinate system (�,� ��) the motion is unsteady because of the moving boundary. In a coordinate system (�,� ��) 

moving with speed   � , it can be treated as steady because the boundary shape appears to be stationary. The transformation 
between the frames is given by 
 
�̅ = �� ��  ;            �� = ��;            �� = �� �;         �̅ = ��                                                                                                                (14) 
 

where (�� , �̅)  are the components of the velocity in the moving coordinate system. 
 
We use the following   non-dimensional variables 
 

� =
��

�
�̅;      � =

��

�
;      � =

��

�
 ;    � =

��

�
 ;     � =

�

��
�̅ ;     � =

����

�(���)�
�̅ ;    =

��

�
                                                                                (15) 

 

where the wavelength  �  is the characteristic longitudinal length. Substituting (14) into (8) to (13) and then using dimensionless 
variables (15), we arrive at 
 

   �
��

��
+

��

��
= 0                                                                                                                                                                                  (16) 

 
 

�� ����
�

��
+ �

�

��
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���

�
�
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+
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 (17) 
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��
+ �(1 + �)

��
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�
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��
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in which the dimensionless wave number �, the Reynolds number ��, and the Weisenberg number  �� are defined, respectively, 
as 
 

  � =
���

�
,    �� =

���

�
,   �� =  

��

�
                        

                                      

Equation (16) allows the introduction of the dimensionless stream function �(�, �) in terms of 

 

� =
��

��
,        � = �

��

��
                                                                     

 

In terms of   � , we find that (16) is identically satisfied, while the other equations take the form 

��� ��
��

��

�
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�
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�
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��
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 (22)                                                                         
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�
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 �
���

�
�

���

����
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��

��

�

��

��

��

�

��
� ��� + 2������

���

����
+  �� �(1 �)

���

��� + ��(1 + �)
���

��� � ���                             (26)     

 
Rate of Volume Flow and Boundary Conditions 
 
The dimensional rate of fluid flow in the fixed frame is given by 
 

  � = ∫ ��(�� , ��, �)
��

�
���                                                                                                                                                                     (27) 

 

where �  is a function of ��  and �. The rate of fluid flow in the moving frame is given by 
 

  � = ∫ �� (�̅ , ��)���,
��

�
                                                                                                                                                                        (28) 

 

where �  is a function of  �̅ alone. With the help of (14) and (15), one can show that these two rates related through 
 
  � = � + � �                                                                                                                                                                                     (29) 
 

The time-averaged flow over a period � at a fixed position �� is given by 
 

   �� =
�

�
 ∫ �

�

�
 ��.                                                                                                                                                                              (30) 

 
 
Substituting (29) into (30), we find that 
 
  �� = � + ��                                                                                                                                                                                    (31) 
 

If we define the dimensionless time averaged flows � and �, respectively, in the fixed and moving frame as  
 

  � =
��

��
 ,                  � =

�

��
                                                                                                                                                              (32) 

 
we find that (2.31) reduces to 
 
   � = � + 1                                                                                                                                                                                    (33) 
 
where 
 

  � = ∫
��

��
 

�

�
�� = �( ) �(0)                                                                                                                                                     (34) 

 
If we choose the zero value of the streamline along the centre line (� = 0) 
 
  �(0) = 0                                                                                                                                                                                        (35) 
 
Then the shape of the wave is given by the streamline of value 
 
�( ) = �                                                                                                                                                                                         (36) 
 
The boundary conditions for the dimensionless stream function in the moving frame are 
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� = 0 ,  
���

��� = 0          on the centre line     � = 0                                                                                                                           (37) 

 

 
��

��
= 1 , � = �     at the wall  � =                                                                                                                                             (38) 

 

We also note that  represents the dimensionless form of the surface of the peristaltic wall given by 

 
(�) = 1 + � ��� �                                                                                                                                                                          (39) 

 
where 
 

� =
�

�
                                                                                                                                                                                                 (40) 

 
is the amplitude ratio or the occlusion and 0 < � < 1. 
 
Equations for Large Wave Length 
 
A general solution of the dynamic equations (22)-(26) for arbitrary values of all parameters seems to be impossible to find. 

Accordingly, we carry out our investigation on the basis that the dimensionless wave number � is small, that is, 
 
� ≪ 1,                                                                                                                                                                                               (41) 
 

which corresponds to the  long-wavelength approximations Thus, to lowest order in �, equations (22)-(26) gives 
 

�
���

�
�

��

��
=

���� 

��
+

���

��� �� �
��

��
+ 1� + � sin �                                                                                                                             (42) 

 
��

��
= 0                                                                                                                                                                                                (43) 

 

��� ��(1 + �)
���

��� ��� = 0                                                                                                                                                          (44) 

 

�
�

�
�

���

��� = ��� +
��

�
(1 �)

���

��� ���
��

�
(1 + �)

���

��� ���                                                                                                              (45) 

 

��� + ��(1 �)
���

��� ��� = 0                                                                                                                                                         (46) 

 
Substituting (44) and (46) into (45) yields 
 

  ��� =
�

�

�
�

���

���

�����(����)
���

���

�                                                                                                                                                                    (47) 

 

We note that from equation (43) that   � ≠ �(�). The elimination of the pressure from (42) and (43) yields 
 

��

��� �
�

�

�
���

���

��� ����(����)�
���

��� �
�

�����(����)�
���

��� �
� ���� = 0                                                                                                                                    (48) 

 
With the help of (47), the equation (42) takes the form 
 

�
���

�
�

��

��
=

� 

��
�

�
�

�
�

���

���

�����(����)
���

���

�� +
���

��� �� �
��

��
+ 1� + � ��� �                                                                                               (49)                  

 
Perturbation Solution 
 
For small values of   ���, (48) and (49) can be written using binomial theorem as 
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��

��� �
���

��� + ����� �
���

��� �
�

+ ����� �
���

��� �
�

������ = 0                                                                                                          (50) 

 
��

��
=

���

��� + �����
� 

��
�

���

��� �
�

+ �����
� 

��
�

���

��� �
�

���� �
��

��
+ 1� + ��� ��� �                                                                        (51)       

 
where the dimensionless parameters ��, �� and �� are defined as 
 

�� = �
(����)�

���
�,      �� = �

(����)��

���
�,     �� = �

�

���
�                                                                                                                        (52) 

 
Now we find the solution for (50) and (51) with boundary conditions (37) and (38) for a small Weisenberg number. We may 
expand flow quantities in a power series of   ���. We write the stream function�, the pressure field �, and the flow rate � in the 
following form 
 
� = �� + ����� + ����� + ,   
 � = �� + ����� + ����� + ,   
 � = �� + ����� + ����� + ,                                                                                                                                                   (53) 
 
If we substitute (53) into (37), (38), (43), (50), and (51), and separate the terms of different orders in ��� we obtain the following 
systems of partial differential equations for the stream function and pressure gradient together with the boundary conditions. 
 
System of order ��� 
 
The following system of equations of zeroth order is as follows:              
 
����

��� ����
����

��� = 0                                                                                                                                                                                          (54a) 

   

 
���

��
=

����

��� ���� � 
���

��
+ 1� + ��� ��� �                                                                                                                                 (54b) 

 
���

��
= 0                                                                                                                                                                                                                     (54c) 

 
with the boundary conditions 
 

�� = 0,        
����

��� = 0           at          � = 0                                                                                                                                                         (55a) 

 

�� = �� ,      
���

��
= 1        at          � =                                                                                                                               (55b) 

 
System of order ��� 
 
 The first order differential equations are 
 
����

��� ���� �
����

��� � = ��
��

��� ��
����

��� �
�

�                                                                                                                                      (56a)          

 
���

��
=

����

��� + ��
� 

��
��

����

��� �
�

� ����
���

��
                                                                                                                                      (56b)   

 
���

��
= 0                                                                                                                                                                                            (56c) 

 
with the boundary conditions 
 

�� = 0,        
����

��� = 0      at     � = 0                                                                                                                                                                  (57a)     

 

�� = �� ,      
���

��
= 0        at       � =                                                                                                                                              (57b) 
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System of order ��� 
 
The system of equations of second order is composed of  
 
����

��� ����
����

��� = 3��
��

��� ��
����

��� �
�

 
����

��� � ��
��

��� ��
����

��� �
�

�                                                                                                (58a)   

 
���

��
=

����

��� ����
���

��
+ 3��

� 

��
��

����

��� �
�

����

��� � + ��
� 

��
��

����

��� �
�

�                                                                                              (58b) 

 
���

��
= 0                                                                                                                                                                                                                      (58c) 

 
 
with the boundary conditions 
 

  �� = 0,        
����

��� = 0    at          � = 0                                                                                                                                                             (59a)   

 

  �� = �� ,      
���

��
= 0      at          � =                                                                                                                                            (59b) 

 
In this system, further corrections due to the Johnson-Segalman constitutive equation enter. We seek to solve the sequence of 
problems at each order and generate thereby the series solution. 
 
Zeroth order solution 
 
The solution to the zeroth-order problem (54) subject to the boundary conditions (55) is given by   
 
 

�� = �
��� � ������� � � �� �

�� � ������� � � �� �
� ��

���� � � �� �

� � �� ���� � � �� �
�

���� � � �� �

� � �� ���� � � �� �
                                                                                                       (60) 

 
 

�� = �
��� � ������� � � �� �

�� � ������� � � �� �
� �1

���� � � �� �

���� � � �� �
�

���� � � �� �

���� � � �� �
                                                                                                            (61) 

 
From the second and third equations in (54), it is clear that the transverse pressure gradient is zero and the longitudinal pressure 
gradient is given by 
 
 
���

��
= ���� �

��� � ������� � � �� �

�� � ������� � � �� �
+ 1� + ��� ��� �                                                                                                                       (62)                

       
 
The pressure rise per wavelength (Δ���

) in the longitudinal direction can be evaluated on the axis at � = 0.  Thus, at the zeroth 

order, we have 
 
 

����
= ∫

���

��

��

�
��  

 
 

First order solution 
 
 

Substituting the zeroth-order solution into (56) the system of ��� reduces the first equation as 
 

����

��� ���� �
����

��� � =
��

��� �
���

��
��� ��� ��

�

�
�� ����� � � �� �

� ���

�
� ����� � � �� �

�                                                                                           (63) 

 
 

On solving the above equation with boundary conditions (57), the expression for the stream function �� the axial velocity �� is 
given by  

26624      Naga Jyothi et al. Analysis of magnetic field on the peristaltic transport of johnson-segalman fluid in an inclined channel bounded by flexible walls 
 



                                      (64) 
 

                                               (65) 
 
Using the zeroth-order solution in the second equation of (56), along with the boundary conditions (57), the longitudinal pressure 
gradient turn out to be     
 

                                                            (66) 
 
where 
 

                                      (67) 
 

The pressure rise per wavelength (Δ���
) in the longitudinal direction can be evaluated on the axis at � = 0.  Thus, at the first 

order, we have 
 

����
= ∫

���

��

��

�
��  

 
Second order solution 
 
If we insert the zeroth-order and first-order solutions into (62), we get 
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          (68) 
 
 
Solving (68), subject to the boundary conditions (65), we find, after lengthy calculations, the stream function and axial velocity at 
this order are: 
 
 

 
                                                                                                                                                                                        
                                                                                                                                                                                           (69) 
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                                                                              (70) 
 

The longitudinal pressure gradient is given as 
 

                                                             (71) 
where 
 

                                                                     (72) 
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The pressure rise per wavelength (Δ���
) in the longitudinal direction can be evaluated on the axis at � = 0.  Thus, at second 

order, we have 
 

����
= ∫

���

��

��

�
��  

 

Now we summarize the results of the perturbation series through the order   ���. The expressions for �, � and 
��

��
  may 

respectively take the following form 
 

 

 
 
                                                                                                                                                                                                           (73) 
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                                                                                                                                                                                                           (74) 
 

                                                         (75) 
 
 

RESULTS AND DISCUSSION 
 

The main goal of this section lies in the analysis of significant parameters on   �, �  and   
��

��
. Further the pressure rise per wave 

length at the channel walls are carefully analyzed through numerical integration. 
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To study the behavior of axial velocity �, numerical calculations for several values of magnetic parameter   �, Weissenberg 

number   ��, amplitude ratio � and slip parameter  � are carried out. The effect of the magnetic parameter � on the velocity 

distribution can be seen through Fig (2). It is observed that the axial velocity decreases with increase in   �. Fig (3) depicts that 

velocity decreases with increase in Weissenberg number   ��. From Fig (4) it is observed that velocity decreases as the amplitude 
ratio increases. Fig (5) shows that velocity increases as the value of slip parameter increases. 
 

The variation of stream function � for different values magnetic parameter   �, Weissenberg number   ��, amplitude ratio � 

and slip parameter   � are carried out. From Fig (6) it is observed that the flow decreases as the value of � increases. Fig (7) 

depicts that the flow increases with the increase in the Weissenberg number   ��. The variation of the flow with the variation of 

amplitude ratio � is seen in Fig (8). It shows that flow increases with increase in   �. From the Fig (9) it is observed that as slip 
parameter increases, flow decreases.  
 

The variation of axial pressure gradient 
��

��
  for different values of magnetic parameter   �, Weissenberg number   ��, angle of 

inclination  � , amplitude ratio � and slip parameter  � are carried out. Fig (10) depicts that the axial pressure gradient 
��

��
 is 

increasing in the intervals (0.5, 1.0) & (1.5, 2.0), the pressure gradient is decreasing in the intervals (0, 0.5), (1.0, 1.5) & (2.0, 2.5) 

respectively with increase in the value of magnetic parameter   �. The effect of Weissenberg number �� on 
��

��
 is seen through     

Fig (11).  
 

It is observed that, as the Weissenberg number �� increases, the axial pressure gradient is increasing in the in the intervals (0.5, 

1.0) & (1.5, 2.0) but �� has not much effect on 
��

��
 in the intervals (0, 0.5), (1.0, 1.5) & (2.0, 2.5) respectively. The variation of 

axial pressure gradient 
��

��
 with angle of inclination � is shown in Fig (12). It is observed that, the axial pressure gradient increases 

with increase in the value of   �. From Fig (13) we can see that the axial pressure gradient is increasing in the intervals (0.5, 1.0) & 

(1.5, 2.0) as the value of amplitude ratio �  increases and   �  has not much effect on pressure gradient in the intervals (0, 0.5), 

(1.0, 1.5) &       (2.0, 2.5) respectively. Fig (14) shows the variation of the axial pressure gradient 
��

��
  with slip parameter   �. Here 

we observe that as �  decreases, the pressure gradient 
��

��
 is decreasing in the intervals (0.7, 0.8) & (1.7, 1.8) but with increase in 

slip parameter � there has not much effect on the pressure gradient  
��

��
 in the intervals (0, 0.6), (0.8, 1.7) & (1.8, 2.5) respectively. 

 

 
 

Fig 1.  Schematic diagram of the inclined channel 
 

 

Table 1: Pressure drop per wave length for various values of flux � and the   magnetic parameter �.  

The other parameters are � = �, � = �, � = �. �, �� = 0.05, � =
�

�
 and � = �. � 

 
 
 
 
 
 

� 
-0.5 -1.0 -2.0 -3.0 

� 
0.10     0.12      0.14 0.10     0.12      0.14 0.10      0.12    0.14 0.10     0.12     0.14 

� 
5.65     1.20   - 0.15 6.58     2.15      0.79 8.49      4.05    2.69 10.38    5.95    4.29 
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The corresponding pressure drops in the flow direction over a wave length are listed in the Table 1 for some values of � and  � 

with small value of Weissenberg number  �� = 0.05. It is observed that, the pressure drops decrease over a wavelength with 
increase in the values of the flux and the magnetic parameter. 
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