

APPLICATION OF STATIC SLICER 1.01 FOR STATIC SLICING

*Suchismita Mishra

Department of Computer Science and Applications, Sambalpur Univers

ARTICLE INFO ABSTRACT

The size as well as the complexity of the software are a substantial impact and are increasing with the
increase of customer requirements and applications. As a result the maintenance of software becomes
more and more tough. So in order to cope up the prog
Program slicing is used for disintegration of a program. Slicing is a program analysis technique which
is also used for various imperative programming languages. It aids understanding of data flow, control
flow and debugging. Program slicing is used in various applications in the field of software
engineering such as program debugging, understanding, program maintenance, testing and complexity
measurement. Now a days the software size is very large and it is a
maintain and test. To debug a program, the whole program is checked line by line and find out the
error. This procedure is very slow and also time taking. To overcome such issues Weiser introduced
program slicing. The proc
have no effect upon the semantics of interest. Thus program slices are smaller than the program. The
sliced program is easy to understand and maintain. In the past three decades, v
program slices have been proposed as well as a number of methods to compute them. Static slicing is
the easiest program slicing and it is used to calculate the computation slice. In this thesis static
slicer1.01 tool is used. Graphviz too

Copyright©2016, Suchismita Mishra and Sarada Baboo
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The complexity of software application shows significant
increase as the size of software increases. As a result the
program maintenance activities such as adding new
functionality, debugging and testing consume more amounts of
available resources for software development. In order to deal
with the complexity of software, there is need of computer
supported methods for both decomposition and dependence
analysis of programs. The Program slicing technique is one
such method that carries out decomposition and
analysis of programs (Mark Harman and Robert Hierons
2001). Program slicing was originally introduced by Mark
Weiser. It is a decomposition technique
extracts from program statement to a particular computation.
Program slicing is referred to as finding all statements in a
program that directly or indirectly affect the value of a variable
occurrence (Mark Weiser, 1981). There are different types of
program slice like Static Slicing, Dynamic Slicing, Forward
Slicing, Backward Slicing, Quasi static slicing, Amorphous

*Corresponding author: Suchismita Mishra,
Department of Computer Science and Applications, Sambalpur
University, Jyoti Vihar, Odisha, India.

ISSN: 0975-833X

Article History:

Received 23rd March, 2016
Received in revised form
29th April, 2016
Accepted 27th May, 2016
Published online 15th June, 2016

Key words:

Static Slicing,
Control Flow Graph,
Static Slicer tool,
Graphviz.

Citation: Suchismita Mishra and Sarada Baboo, 2016.
(05), 32412-32416.

RESEARCH ARTICLE

APPLICATION OF STATIC SLICER 1.01 FOR STATIC SLICING

Suchismita Mishra and Sarada Baboo

of Computer Science and Applications, Sambalpur University, Jyoti Vihar, Odisha, India

ABSTRACT

The size as well as the complexity of the software are a substantial impact and are increasing with the
increase of customer requirements and applications. As a result the maintenance of software becomes
more and more tough. So in order to cope up the program complexity, slicing technique is performed.
Program slicing is used for disintegration of a program. Slicing is a program analysis technique which
is also used for various imperative programming languages. It aids understanding of data flow, control

ow and debugging. Program slicing is used in various applications in the field of software
engineering such as program debugging, understanding, program maintenance, testing and complexity
measurement. Now a days the software size is very large and it is a
maintain and test. To debug a program, the whole program is checked line by line and find out the
error. This procedure is very slow and also time taking. To overcome such issues Weiser introduced
program slicing. The process of slicing deletes those parts of the program that can be determined to
have no effect upon the semantics of interest. Thus program slices are smaller than the program. The
sliced program is easy to understand and maintain. In the past three decades, v
program slices have been proposed as well as a number of methods to compute them. Static slicing is
the easiest program slicing and it is used to calculate the computation slice. In this thesis static
slicer1.01 tool is used. Graphviz tool is used to construct CFG.

Suchismita Mishra and Sarada Baboo, This is an open access article distributed under the Creative Commons Att
use, distribution, and reproduction in any medium, provided the original work is properly cited.

The complexity of software application shows significant
increase as the size of software increases. As a result the
program maintenance activities such as adding new
functionality, debugging and testing consume more amounts of

ware development. In order to deal
with the complexity of software, there is need of computer
supported methods for both decomposition and dependence
analysis of programs. The Program slicing technique is one
such method that carries out decomposition and dependence

Mark Harman and Robert Hierons,
. Program slicing was originally introduced by Mark

It is a decomposition technique. This technique
extracts from program statement to a particular computation.

is referred to as finding all statements in a
program that directly or indirectly affect the value of a variable

. There are different types of
program slice like Static Slicing, Dynamic Slicing, Forward

atic slicing, Amorphous

Department of Computer Science and Applications, Sambalpur

Slicing, Chopping etc. One of the simplest slicing among all
the slicing is static slicing. Program slices are computed by
static slicing. Using static data flow and control data flow
analysis program slice is computed. Static slicing is computed
for those statements of the pro
execute. To understand the program and for maintenance of
software static slicing is used. To understand the program
execution and its detail process is not required in static slicing.
To compute slice, static analysis is used in
means first analyzed the source code of the program and then
compute the slices for input values
advantages of static slicing are that, it is easy to use. It is very
fast to identify a slice. In static slicing, sl
directly from the original source program so it is easier. There
are many disadvantages in static slicing. First, in static slicing a
very large size of program slice is generated but in dynamic
slicing smaller size of program slice is
array elements and fields in dynamic records as individual
variables cannot treat by static slicing. The parts of a program
that contribute to the computation to the selected function are
understood by the help of static slicing
Keith Brian Gallagher, 1996).

 Available online at http://www.journalcra.com

International Journal of Current Research
Vol. 8, Issue, 06, pp.32412-32416, June, 2016

 INTERNATIONAL

2016. “Application of static slicer 1.01 for static slicing”, International Journal of Current Research

 z

APPLICATION OF STATIC SLICER 1.01 FOR STATIC SLICING

ity, Jyoti Vihar, Odisha, India

The size as well as the complexity of the software are a substantial impact and are increasing with the
increase of customer requirements and applications. As a result the maintenance of software becomes

ram complexity, slicing technique is performed.
Program slicing is used for disintegration of a program. Slicing is a program analysis technique which
is also used for various imperative programming languages. It aids understanding of data flow, control

ow and debugging. Program slicing is used in various applications in the field of software
engineering such as program debugging, understanding, program maintenance, testing and complexity
measurement. Now a days the software size is very large and it is also very difficult to understand,
maintain and test. To debug a program, the whole program is checked line by line and find out the
error. This procedure is very slow and also time taking. To overcome such issues Weiser introduced

ess of slicing deletes those parts of the program that can be determined to
have no effect upon the semantics of interest. Thus program slices are smaller than the program. The
sliced program is easy to understand and maintain. In the past three decades, various notions of
program slices have been proposed as well as a number of methods to compute them. Static slicing is
the easiest program slicing and it is used to calculate the computation slice. In this thesis static

is an open access article distributed under the Creative Commons Attribution License, which

One of the simplest slicing among all
the slicing is static slicing. Program slices are computed by
static slicing. Using static data flow and control data flow
analysis program slice is computed. Static slicing is computed
for those statements of the program which are possible to
execute. To understand the program and for maintenance of
software static slicing is used. To understand the program
execution and its detail process is not required in static slicing.
To compute slice, static analysis is used in this technique. It
means first analyzed the source code of the program and then
compute the slices for input values (Tip Frank, 1995). The
advantages of static slicing are that, it is easy to use. It is very
fast to identify a slice. In static slicing, slicing is calculated
directly from the original source program so it is easier. There
are many disadvantages in static slicing. First, in static slicing a
very large size of program slice is generated but in dynamic
slicing smaller size of program slice is generated. Second, the
array elements and fields in dynamic records as individual
variables cannot treat by static slicing. The parts of a program
that contribute to the computation to the selected function are
understood by the help of static slicing (David Binkley and

INTERNATIONAL JOURNAL
 OF CURRENT RESEARCH

International Journal of Current Research, 8,

Literature Review

In this part various existing method and techniques of different
slicing techniques are reviewed like mixed approach of static
and dynamic slicing (S - D Slicing), Partial Evaluation And
Program Slicing, Modular Monadic Slicing Approach,
Complexity Measure Based on Program Slicing (CMBPS),
Constraint logic Programming (CLP), Forward static slicing
etc. From different paper it is found that slice computation is
difficult for I/O statements, logical statements, control
statements, looping statements etc. So in this paper the work is
extended to calculate slicing point using Static Slicer 1.01tool.

Experimental Designs

Here 2 types of tools are used known as Graphviz and Static
Slicer 1.01. Graphviz is also known as Graph Visualization
Software. It is a program for drawing graphs specified in DOT
(Diagrammatic Objective Text) language scripts. DOT
language is a graph description language to draw the data and
control flow. It is a plain text graph description language.
Graphviz is open source graph visualization software. Graph
visualization is a way of representing structural information as
diagrams of abstract graphs and networks
(https://en.wikipedia.org/wiki/Graphviz). Static Slicer is a
small, java based application. It is simple to use. It is specially
designed to calculate static slice (http://sourceforge.net/
p/someslice/wiki/Home;http://www.downloadcollection.com/s
taticslicer.htm). The proposed algorithm is described below:

Algorithm

Step 1: Input File
Step 2: Create CFG nodes and set line numbers
Step 3: Initialize root node and slicing criterion
Step 4: Initialize variable of criterion
Step 5: Initialize root node
Step 6: Count number of nodes and set criterion to start node
Step 7: Store node in CFG as BST (Binary Search Tree)
Step 8: Create vector
Step 9: Find child node and its predecessor and successor node
Step 10: Add variables
Step 11: if variable! = null
 Get slice criterion and calculate the relevant variable and
store the variable
 else
 No slice point
 end
Step 12: if criterion! = null
 Find node using line number
else
 end
Step 13: Get slice number from CFG
Step 14: Get child node
Step 15: if child node > 0
 Get slicing criterion
 Get line numbers or node
 If node is in branch
 Find line number
 else
 Display line number or slicing points

 end
 (Check influence variable)
Step 16: if influence variable= = criterion and variable vector
 Get line number
 Go to step 13

Description of the Algorithm

The above algorithm describes the overall flow of the slicing
algorithm technique. Initially a file is input and creates control
flow graph nodes. After creating the nodes set the line numbers
of file to node. The root node and slicing criterion C= (L, V)
where L is the line number and V is the slicing variable for
example (10, {x}) is initialized. Then initialize the variable of
criterion i.e. x. In the file, the first line is initialized as start
node. The number of nodes is count and set the criterion to
start node. The nodes are stored in control flow graph as binary
search tree. To store slice point a vector is created. Then find
the child node and its predecessor and successor node. In the
algorithm add variables. If in the algorithm, variable is not
there then there is no slice point and the process is end there. If
variable is there, then get the slice criterion and calculate the
relevant variable and store the variable in a vector. It is based
on the criterion. If the criterion is null then the process is end
there. If the criterion is there then find the node by using the
line number. After finding the node get slice number from
control flow graph by using recursion. Child node is derived
from the root node. If the child node is greater than zero then
get slicing criterion. If the child node is less than zero then
displays the line numbers or slicing point and the process is
end there. Slicing criterion is found out and then gets the line
numbers or node. If node is in branch then find the line number
and check the influence variable. If influence variable is equal
to criterion and variable vector then find the line number and
the process is repeated.

RESULTS

Here in this paper, Static Slicer 1.01 tool is used for computing
the slicing points and has got the results as shown in the
following screenshots. Here the algorithm has been taken as
input to the slicer tool and the respective slicing points have
been determined and shown in the screen shots. Graphviz tool
is used to display the control and dataflow dependency. Here
programs of different sequential structured program, selective
program using if statement, iterative program using while loop,
looping and selective statement etc has been taken. In this
paper we take a Program to calculate factorial using while loop
to show the slicing point in the screen shots. Slicing point is
depending on the slicing criterion. So when slicing criterion is
changed then slicing point also changed. How the slicing
points are changed it is shown in below screen shots.

Dot program to generate the data flow

Here the slicing points that were found out using static slicer
are (Mark Weiser, 1981; Tip Frank, 1995; David Binkley and
Keith Brian Gallagher, 1996; https://en.wikipedia.org/
wiki/Graphviz; http://www.downloadcollection.com/static
slicer.htm). The slicing criterion for this program was taken as
(11, {fact}).

 32413 Suchismita Mishra and Sarada Baboo, Application of static slicer 1.01 for static slicing

Fig. 1. Slicing point calculation using static slicer

Fig. 2. CFG of factorial number

Fig. 3. Program with Line number

Fig. 4. Line number with slice point

Fig. 5. Data flow with influence variable dependency

Dot program to generate the data flow

 digraph{

label=" C=(11,{fact}): L=11, V=fact"

start->2

start->3

start->4

start->5

subgraph{

rank=same; 2;3;4;5;

}

5->7[lab el="T"]

5->9[lab el="F"]

7->8

8->5

9->10

10->end

4->7[style=dot ted, color=red]

7->2[style=dot ted, color=red]

7->5[style=dot ted, color=red]

5->3[style=dot ted, color=red]

7->9[style=dot ted, color=red]

}

 32414 International Journal of Current Research, Vol. 08, Issue, 06, pp.32412-32416, June, 2016

Here line number L is 11 and the slicing variable is fact.
According to slicing criterion and the slicing variable fact, the
line number 4, 7 and 9 are the slicing point. In the line number
7 c is the influence variable. Hence the slicing point occurred at
line number 2 and 5. In line number 5, n is the influence
variable for variable c. So line number 3 is the slicing point.

When slicing criterion is changed:

Fig. 6. Slicing point calculation using static slicer

Fig. 7. Data flow with influence variable dependency

Dot program to generate the data flow

Here the slicing points that were found out using static slicer
are (Mark Weiser, 1981; Tip Frank, 1995; David Binkley and

Keith Brian Gallagher, 1996; https://en.wikipedia.org/
wiki/Graphviz; http://www.downloadcollection.com/static
slicer.htm). The slicing criterion for this program was taken as
(11, {fact, n}). Here line number L is 11 and the slicing
variable is fact, n. According to the slicing variable fact, line
number 4, 7 and 9 are slicing points. According to the slicing
variable n, line number 3 is the slicing variable. In line number
7, c is the influence variable. So line number 2 and 5 are the
slicing points. In this way we changed the slicing criterion and
got the different slicing point.

Conclusion

Program slicing is a technique to find essential program
instructions for a specific result in the execution using a
particular condition. The advantage of using this technique is
that the portions of the program can be left out that does not
influence the result. It is an automated technique to extract part
of a program that affect a set of variables. It is used for easy
identification of an error for a program having large Lines of
Code. It is also used to find the dependency that exists between
direct and indirect related instructions basing on data and
control flow analysis. Program slicing technique is not only
used for Procedure Oriented Programs but also for Object
Oriented Programs. Reusability is the vital concept of Object
Oriented Programming. However in some situations the code
that needs to be reutilized sometimes combined with other kind
of code, which is not needed. The solution for this type of
problem is Static slicing technique which can minimize the

 digraph{

label=" C=(11,{fact,n}): L=1 1, V=fact,n"

start->2

start->3

start->4

start->5

subgraph{

rank=same; 2;3;4;5;

}

5->7[label="T"]

5->9[label="F"]

7->8

8->5

9->10

10->end

4->7[style=dotted, color=red]

7->2[style=dotted, color=red]

7->5[style=dotted, color=red]

5->3[style=dotted, color=red]

7->9[style=dotted, color=red]

}

 32415 Suchismita Mishra and Sarada Baboo, Application of static slicer 1.01 for static slicing

needed code for execution and ignore the irrelevant one. In this
thesis, programs having static contents are taken into
consideration for analysis of Static Slicing. A set of programs
are analyzed using the tool basing on both Data Flow Graph
(DFG) and Control Flow Graph (CFG). The tool can be used
to find the Slicing points basing on an input Slicing criterion. It
is concluded from the experiment of this paper for a
considerable set of programs, that the tool can be used for
Static Slicing for programs having control and looping types of
statements. In future, new algorithms and approaches to Static
Slicing can be implemented for the used tool to extend the
work of Weiser. The research work shall be extended to slice
programs for jumping type of statements, slicing of array
elements using Program Dependency Graph (PDG) that may
be applicable in various real and industrial applications.
Taking the advantage of Static Slicing, the tool Static Slicer
1.01 shall also be extended to identify semantics of a program
that can be applied for program verification.

REFERENCES

David Binkley and Keith Brian Gallagher, 1996. "Program

slicing", Advances in Computers, Academic Press, Volume
43, pages 1–50.

http://sourceforge.net/p/someslice/wiki/Home/
http://www.downloadcollection.com/staticslicer.htm
https://en.wikipedia.org/wiki/Graphviz
Mark Harman and Robert Hierons, 2001. "An overview of

program slicing", Software Focus, Volume 2, Issue 3,
pages 85–92.

Mark Weiser, 1981. "Program slicing", Proceedings of the 5th
International Conference on Software Engineering, IEEE
Computer Society Press, pages 439–449.

Tip Frank, 1995. “A Survey of program slicing techniques”,
Journal of programming languages, 3.3121-189.

 32416 International Journal of Current Research, Vol. 08, Issue, 06, pp.32412-32416, June, 2016

